科目: 来源:江苏省张家港市2012年中考网上阅卷适应性考试数学试题 题型:044
如图,在平面直角坐标系中,四边形ABCD是梯形,BC∥AD,∠BAD+∠CDA=90°,AD在x轴上,点A的坐标(-1,0),点B的坐标(0,2),BC=OB.
(1)求过点A、B、C的抛物线的解析式;
(2)动点E从点B(不包括点B)出发,沿BC运动到点C停止,在运动过程中,过点E作EF⊥AD于点F,将四边形ABEF沿直线EF折叠,得到四边形A1B1EF,点A、B的对应点分别是点A1、B1,设四边形A1B1EF与梯形ABCD重合部分的面积为S,F点的坐标是(x,0).
①连接CF,当△CDF是直角三角形时,点F的坐标为________;(直接写出答案)
②求S与x的函数关系式;
③在点E运动过程中,S的值是否能超过梯形ABCD面积的一半,若能,求出相应的x的取值范围;若不能,请说明理由.
查看答案和解析>>
科目: 来源:广东省汕头市潮南区2012届九年级中考模拟考试数学试题 题型:044
如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.
(1)求a的值;
(2)当四边形ODPQ为矩形时,求这个矩形的面积;
(3)当四边形PQBC的面积等于14时,求t的值.
(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)
查看答案和解析>>
科目: 来源:广东省汕头市澄海区2012年初中毕业生学业模拟考试数学试题 题型:044
如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线x=上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连结BD,已知在对称轴上存在一点P,使得△PBD的周长最小.请求出点P的坐标.
(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(与点O、B不重合),过点M作MN∥BD交x轴于点N,连结PM、PN,设OM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在最大值?若存在,求出最大值并求此时M点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:广东省汕头市濠江区2012届九年级中考模拟考试数学试题 题型:044
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为(点不在y轴上),连接P,A,C.设点P的横坐标为a.
(1)当b=3时,
①求直线AB的解析式;
②若点的坐标是(-1,m),求m的值;
(2)若点P在第一象限,记直线AB与C的交点为D.当D∶DC=1∶3时,求a的值;
(3)是否同时存在a,b,使△CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:广东省汕头市濠江区2012届九年级中考模拟考试数学试题 题型:044
如图,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.
查看答案和解析>>
科目: 来源:广东省汕头市金平区2012年中考模拟数学试题 题型:044
在Rt△AOB中,∠AOB=90°,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D点为x轴正半轴上的一点,以OD为一边在第一象限内作等边△ODE.
(1)如图1,当E点恰好落在线段AB上,求E点坐标;
(2)在(1)问的条件下,将△ODE在线段OB上向右平移,如图2,线段EF与线段O始终相等吗?请证明你的结论;
(3)若点D从原点出发沿x轴正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y.当2<x<4时,请直接写出y与x的函数关系式.
查看答案和解析>>
科目: 来源:广东省汕头市金平区2012年中考模拟数学试题 题型:044
一位同学拿了两块45°三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.
(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为________.
(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分
的面积为________.
(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为________.请证明你的结论.
查看答案和解析>>
科目: 来源:湖北省黄石市2012届九年级5月联考数学试题 题型:044
如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2-2x-8=0的两个根.
(1)求这条抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;
(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:河南省安阳市2012届九年级5月中考模拟考试数学试题 题型:044
如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的啦标为(-1,0),点B在抛物线y=ax2+ax-2上,
(1)点A的坐标为________,点B的坐标为________;抛物线的解析式为________;
(2)在抛物线上是否还存在点P(点B除外),使△ACP是以AC为直角边向直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)若点D是(1)中所求抛物线在第三象限内的一个动点,连结BD、CD.当△BCD的面积最大时,求点D的坐标.
(4)若点P是(1)中所求抛物线上一个动点,以线段AB、BP为邻边作平形四边形ABPQ.当点Q落在x轴上时,直接写出点P的坐标.
查看答案和解析>>
科目: 来源:江苏省苏州市景范中学2012届九年级中考二模数学试题 题型:044
如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,-1),B(3,-1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为秒,△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)将△OPQ绕着点P逆时针旋转90°,是否存在t,使得△OPQ的顶点为O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com