科目: 来源:2011年黑龙江省牡丹江初中毕业学业考试数学试卷 题型:059
如图,将矩形OABC放置在平面直角坐标系中,点D在边OC上,点E在边OA上,把矩形沿直线DE翻折,使点O落在边AB上的点F处,且tan∠BFD=.若线段OA的长是一元二次方程x2-7x-8=0的一个根,又2AB=3OA.请解答下列问题:
(1)求点B、F的坐标:
(2)求直线ED的解析式:
(3)在直线ED、FD上是否存在点M、N,使以点C、D、M、N为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:2011年湖南省娄底市中考数学试题 题型:059
在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙O1,交BC于点E,过点E作EF⊥AB于F,建立如图所示的平面直角坐标系,已知A,B两点的坐标分别为A(0,2),B(-2,0).
(1)求C,D两点的坐标.
(2)求证:EF为⊙O1的切线.
(3)探究:如图,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源:2011年湖南省娄底市中考数学试题 题型:059
如图,已知二次函数y=-x2+mx+4m的图象与x轴交于A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2)-x1x2=10.
(1)求此二次函数的解析式.
(2)写出B,C两点的坐标及抛物线顶点M的坐标;
(3)连接BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.
查看答案和解析>>
科目: 来源:四川省南充市2011高中阶段学校招生统一考试数学试题 题型:059
抛物线y=ax2+bx+c与x轴的交点为A(m-4,0)和B(m,0),与直线y=-x+p相交于点A和点C(2m-4,m-6).
(1)求抛物线的解析式;
(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q的坐标;
(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当⊿PQM的面积最大时,请求出⊿PQM的最大面积及点M的坐标.
查看答案和解析>>
科目: 来源:四川省南充市2011高中阶段学校招生统一考试数学试题 题型:059
如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=600,M是BC的中点.
(1)求证:⊿MDC是等边三角形;
(2)将⊿MDC绕点M旋转,当MD(即M)与AB交于一点E,MC即M)同时与AD交于一点F时,点E,F和点A构成⊿AEF.试探究⊿AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出⊿AEF周长的最小值.
查看答案和解析>>
科目: 来源:2011年山东省日照市初中学业考试数学试题 题型:059
如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(-2,-2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC的面积;
(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积.若存在,请你写出点D的坐标;若不存在,请你说明理由.
查看答案和解析>>
科目: 来源:安徽省2011年初中毕业学业考试数学试题 题型:059
在△
ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<<180°),得到△C.(1)如图,当AB∥C时,设AB与CB/相交于D.证明:△CD是等边三角形;
(2)如图,连接A、B,设△AC和△BC的面积分别为和.求证:∶=1∶3;
(3)如图,设AC中点为E,B/中点为P,AC=a,连接EP,当=_________°时,EP长度最大,最大值为_________.
查看答案和解析>>
科目: 来源:福建省福州市2011初中毕业会考、高级中等学校招生考试数学试题 题型:059
已知,矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5 cm,点Q的速度为每秒4 cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.
查看答案和解析>>
科目: 来源:山东省德州市2011年初中毕业学业考试数学试题 题型:059
在直角坐标系xoy中,已知点P是反比例函数图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.
查看答案和解析>>
科目: 来源:北京市石景山区2011年初中毕业暨中考一模数学试题 题型:059
已知抛物线C:y=x2-(m+1)x+1的顶点在坐标轴上.
(1)求m的值;
(2)m>0时,抛物线C向下平移n(n>0)个单位后与抛物线C1:y=ax2+bx+c关于y轴对称,且C1过点(n,3),求C1的函数关系式;
(3)-3<m<0时,抛物线C的顶点为M,且过点P(1,y0).问在直线x=-1上是否存在一点Q使得△QPM的周长最小,如果存在,求出点Q的坐标,如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com