相关习题
 0  217310  217318  217324  217328  217334  217336  217340  217346  217348  217354  217360  217364  217366  217370  217376  217378  217384  217388  217390  217394  217396  217400  217402  217404  217405  217406  217408  217409  217410  217412  217414  217418  217420  217424  217426  217430  217436  217438  217444  217448  217450  217454  217460  217466  217468  217474  217478  217480  217486  217490  217496  217504  366461 

科目: 来源: 题型:解答题

如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.

(1)说明:
(2)当点C、点A到y轴距离相等时,求点E坐标.
(3)当的面积为时,求的值.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,直角坐标系中Rt△ABO,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O逆时针旋转90°,得到Rt△A′B′O.

(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;
(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.

查看答案和解析>>

科目: 来源: 题型:解答题

某职业学校三名学生到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。
A:如果以10元/千克的价格销售,那么每天可售出300千克.
B:如果以13元/千克的价格销售,那么每天可获取利润750元.
C:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该超市销售这种水果每天获取的利润达到600元?【利润=销售量×(销售单价-进价)】
(3)一段时间后,发现这种水果每天的销售量均不低于225千克.则此时该超市销售这种水果每天获取的最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

 已知在平面直角坐标系xoy中,二次函数y=-2x²+bx+c的图像经过点A(-3,0)和点B(0,6)。(1)求此二次函数的解析式;(2)将这个二次函数的图像向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠sin∠ABD;(3)在第(2)小题的条件下,连接OC,试探究直线AB与OC的位置关系,并且说明理由。

查看答案和解析>>

科目: 来源: 题型:解答题

如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.

(1)求A、B、C三点的坐标.
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
(3)在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A在点B的左侧),点B的坐标为,与y轴交于点,顶点为D。

(1)求抛物线的解析式及顶点D坐标;
(2)联结AC、BC,求∠ACB的正切值;

查看答案和解析>>

科目: 来源: 题型:解答题

如图,已知直线y=x与抛物线y=x2交于A、B两点.

(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=x2的函数值为y2.若y1>y2,求x的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

已知二次函数y=ax2+bx+c的图像经过A(-1,0),B(3,0),C(0,-3)三点,求这个二次函数的解析式.

查看答案和解析>>

科目: 来源: 题型:解答题

如图,在平面直角坐标系xOy中,一次函数y=x+m (m为常数)的图像与x轴交于点A(-3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A、C两点,并与x轴的正半轴交于点B.

(1)求m的值及抛物线的函数表达式;
(2)若P是抛物线对称轴上一动点,△ACP周长最小时,求出P的坐标;
(3)是否存在抛物在线一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若不存在,请说明理由;
(4)在(2)的条件下过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试问是否为定值,如果是,请直接写出结果,如果不是请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为: y2=
(1)用x的代数式表示t,则t=__________;当0<x≤3时,y2与x的函数关系式为:y2=__________________;当3≤x<________时,y2=100;
(2)当3≤x<6时,求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并求此时的最大利润.

查看答案和解析>>

同步练习册答案