相关习题
 0  221322  221330  221336  221340  221346  221348  221352  221358  221360  221366  221372  221376  221378  221382  221388  221390  221396  221400  221402  221406  221408  221412  221414  221416  221417  221418  221420  221421  221422  221424  221426  221430  221432  221436  221438  221442  221448  221450  221456  221460  221462  221466  221472  221478  221480  221486  221490  221492  221498  221502  221508  221516  366461 

科目: 来源:不详 题型:解答题

直线y=1.5x-3分别交x,y轴于A、B两点,O是原点.
(1)求出A、B两点的坐标;
(2)求△AOB的面积;
(3)过△AOB的顶点能不能画出直线把△AOB分成面积相等的两部分?若能,可以画出几条?请任选一条求出该直线所对应的函数关系式.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是(  )
A.1B.3C.3(m-1)D.
3
2
(m-2)

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
货运收费项目及收费标准表
(1)汽车的速度为______千米/时,火车的速度为______千米/时:
(2)设每天用汽车和火车运输的总费用分别为y(元)和y(元),分别求y、y与x的函数关系式(不必写出x的取值范围),当x为何值时,y>y(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?

查看答案和解析>>

科目: 来源:不详 题型:解答题

在茶节期间,某茶商订购了甲种茶叶90吨,乙种茶叶80吨,准备用A、B两种型号的货车共20辆运往外地.已知A型货车每辆运费为0.4万元,B型货车每辆运费为0.6万元.
(1)设A型货车安排x辆,总运费为y万元,写出y与x的函数关系式;
(2)若一辆A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨.按此要求安排A、B两种型号货车一次性运完这批茶叶,共有哪几种运输方案?
(3)说明哪种方案运费最少?最少运费是多少万元?

查看答案和解析>>

科目: 来源:不详 题型:解答题

在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
(3)当t=2秒时,四边形OPQB的面积为多少个平方单位?

查看答案和解析>>

科目: 来源:不详 题型:解答题

加试题
(1)已知a+a-1=3,则
a2
a4-a2+1
______.
(2)如图,在△ABC中,AB=AC,D、E、F分别在BC、AC、AB上,BD=CE,CD=BF,则∠EDF=______
A、90°-
1
2
∠A
B、90°-∠A C、180°-∠A D、180°-2∠A
(3)安岳A地有柠檬100吨,B地有柠檬80吨,计划送往甲、乙两厂深加工,甲厂需要柠檬110吨,乙厂需要柠檬70吨,从A、B两地到甲、乙两厂的路程和运费如下表:
路程(千米)运费(元/吨.千米)
A地B地A地B地
甲厂20151212
乙厂2520108
①若A地运往甲厂柠檬x吨,请写出将所有柠檬运往甲、乙两厂的总运费y(元)与x吨的函数关系式;
②当A、B两地运往甲、乙两厂多少吨柠檬时,总运费最少?最少运费是多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知在平面直角坐标系中,直角梯形ABCD,ABCD,AD=CD,∠ABC=90°,A、B在x轴上,点D在y轴上,若tan∠OAD=
4
3
,B点的坐标为(5,0).
(1)求直线AC的解析式;
(2)若点Q、P分别从点C、A同时出发,点Q沿线段CA向点A运动,点P沿线段AB向点B运动,Q点的速度为每秒
5
个单位长度,P点的速度为每秒2个单位长度,设运动时间为t秒,△PQE的面积为S,求S与t的函数关系式(请直接写出自变量t的取值范围);
(3)在(2)的条件下,过P点作PQ的垂线交直线CD于点M,在P、Q运动的过程中,是否在平面内有一点N,使四边形QPMN为正方形?若存在,求出N点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:单选题

线段y=-
1
2
x+a
(1≤x≤3),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为(  )
A.6B.8C.9D.10

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,建立羽毛球比赛场景的平面直角坐标系,图中球网高OD为1.55米,双方场地的长OA=OB=6.7(米).羽毛球运动员在离球网5米的点C处起跳直线扣杀,球从球网上端的点E直线飞过,且DE为0.05米,刚好落在对方场地点B处.

(1)求羽毛球飞行轨迹所在直线的解析式;
(2)在这次直线扣杀中,羽毛球拍击球点离地面的高度FC为多少米?(结果精确到O.1米)

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在直角坐标系中,ON为过原点的一条直线,点E、F为x、y轴上的任意两点,P为直线ON上一动点(不与原点O重合),PM⊥x轴于M点.
(1)若P(a,a)为直线ON上在第一象限内的任意一点,求直线ON的解析式;
(2)连接PE、PF,若∠PFO+∠PEO=180°,在(1)的条件下,试问线段PE与PF之间是否存在一定的数量关系,并说明理由;
(3)当P在直线ON上的第一象限内任意运动时,在(1)和(2)的条件下,
OE+OF
OM
是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

同步练习册答案