相关习题
 0  221336  221344  221350  221354  221360  221362  221366  221372  221374  221380  221386  221390  221392  221396  221402  221404  221410  221414  221416  221420  221422  221426  221428  221430  221431  221432  221434  221435  221436  221438  221440  221444  221446  221450  221452  221456  221462  221464  221470  221474  221476  221480  221486  221492  221494  221500  221504  221506  221512  221516  221522  221530  366461 

科目: 来源:不详 题型:解答题

在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)如图,过点A作⊙O1的切线与y轴交于点C,点O到直线AB的距离为
12
5
,sin∠ABC=
3
5
,求直线AC的解析式;
(2)若⊙O1经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,⊙P与直线l相切;
(3)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为y=-
3
4
x+6
,则
(1)AO=______;AD=______;OC=______;
(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S与t之间的函数关系式;
(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:填空题

A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入(城区与入口的距离忽略不计),并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,已知甲车以90千米/时的速度匀速行驶.两车之间的距离s(千米)与行驶时间x(小时)之间的关系如图.
给出下列结论:
①A、B两城相距300千米
②乙车与甲车相遇之前速度为60千米/时
③C点的横坐标为
10
3

④两车相遇时距离A城180千米
⑤乙车与甲车相遇后,速度改为90千米/时
以上结论中正确的是______(填序号)

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,正方形OABC边长为2,O是直角坐标系的原点,点A,C分别在x轴,y轴上.点P沿着正方形的边,按O→A→B的顺序运动,设点P经过的路程为x,△OPB的面积为y.
(1)求出y与x之间的函数关系式,写出自变量x的取值范围;
(2)探索:当y=
1
4
时,点P的坐标;
(3)是否存在经过点(0,-1)的直线平分正方形OABC的面积?如果存在,求出这条直线的解析式;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y(升)与行驶的路程x(km)成一次函数关系,其图象如图.
(1)求y与x的函数关系式;
(2)摩托车加满油后到完全燃烧,最多能行驶多少km?

查看答案和解析>>

科目: 来源:不详 题型:填空题

小明同学受《乌鸦喝水》故事的启发,利用量筒和完全相同的若干个小球进行了如下操作(量筒是圆柱体,高为49cm,桶内水高30cm(如图1)):

若将三个小球放入量筒中,水高如图2所示,则放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数表达式为______(不要求写出自变量的取值范围);要使量筒有水溢出(如图3),则至少要放入的小球个数为______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某中学九年级甲、乙两班商定举行一次远足活动,A、B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1、y2千米,y1、y2与x的函数关系图象如图所示.根据图象解答下列问题:
(1)直接写出,y1、y2与x的函数关系式;
(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?
(3)甲、乙两班首次相距4千米时所用时间是多少小时?

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知:如图,直线y=-
3
x+4
3
与x轴相交于点A,与直线y=
3
x相交于点P.
(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)动点E从原点O出发,以每秒1个单位的速度沿着O、P、A的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B,设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.
求:①S与t之间的函数关系式.②当t为何值时,S最大,并求出S的最大值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=-
1
2
x+b(b>0)
分别交x轴、y轴于A、B两点.点C(4,0)、D(8,0),以CD为一边在x轴上方作矩形CDEF,且CF:CD=1:2.设矩形CDEF与△ABO重叠部分的面积为S.
(1)求点E、F的坐标;
(2)当b值由小到大变化时,求S与b的函数关系式;
(3)若在直线y=-
1
2
x+b(b>0)
上存在点Q,使∠OQC等于90°,请直接写出b的取值范围.

查看答案和解析>>

同步练习册答案