相关习题
 0  222261  222269  222275  222279  222285  222287  222291  222297  222299  222305  222311  222315  222317  222321  222327  222329  222335  222339  222341  222345  222347  222351  222353  222355  222356  222357  222359  222360  222361  222363  222365  222369  222371  222375  222377  222381  222387  222389  222395  222399  222401  222405  222411  222417  222419  222425  222429  222431  222437  222441  222447  222455  366461 

科目: 来源:不详 题型:解答题

一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.
(1)写出用高表示长的函数式;
(2)写出自变量x的取值范围;
(3)当x=3厘米时,求y的值;
(4)画出函数的图象.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知y=y1+y2,y1与x+1成正比例,y2与x+1成反比例,当x=0时,y=-5;当x=2时,y=-7.求y与x的函数关系式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DCAB;
(3)当AD=BC时,求直线AB的函数解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=
4
x
交于点A、C,其中点A在第一象限,点C在第三象限.
(1)求B点的坐标;
(2)若S△AOB=2,求A点的坐标;
(3)在(2)的条件下,在y轴上是否存在点P,使△AOP是等腰三角形?若存在,请直接写出P点的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,直线y=2x与双曲线y=
8
x
交于点A、E,直线AB交双曲线于另一点B(2m,m),连接EB并延长交x轴于点F.
(1)m=______;
(2)求直线AB的解析式;
(3)求△EOF的面积;
(4)若点P为坐标平面内一点,且以A,B,E,P为顶点的四边形是平行四边形,请直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,Rt△OAB的斜边OA在x轴上,点B在第一象限,OA:OB=5:4.边AB的垂直平分线分别交AB、x轴于点C、D,线段CD交反比例函数y=
3
x
的图象于点E.当BC=CE时,以DE为边的正方形的面积是(  )
A.
25
29
B.1C.
30
29
D.
36
29

查看答案和解析>>

科目: 来源:不详 题型:解答题

点P是x轴正半轴上的一个动点,过点P作x轴的垂线PA交双曲线y=
1
x
于点A,连接OA并延长,与双曲线y=
1
x
交于点F,FH垂直于x轴,垂足为点H,连接AH、PF.

(1)如图①,当点A的横坐标为
3
2
时,求四边形APFH的面积.
(2)如图②,当点P在x轴的正方向上运动到点D,过点D作x轴的垂线交双曲线于点B,连接BO并延长,与双曲线y=
1
x
交于点F,FH垂直于x轴,垂足为点H,连接BH、DF,求四边形BDFH的面积.
(3)若双曲线的解析式为y=
k
x
,四边形BDFH的面积为______.(直接写出答案)

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,反比例函数y=
k
x
的图象经过点P,则k=______.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,在平面直角坐标系中,点A、B分别在x轴和y轴的正半轴上,OA=2,
OB=4,P为线段AB的中点,反比例函数y=
k
x
的图象经过P点,Q是该反比例函数图象上异于点P的另一点,经过点Q的直线交x轴于点C,交y轴于点D,且QC=QD.下列结论:①k=2;②S△COD=4;③OP=OQ;④ADCB.其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源:不详 题型:填空题

如图,反比例函数y=
k
x
(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为______.

查看答案和解析>>

同步练习册答案