相关习题
 0  223714  223722  223728  223732  223738  223740  223744  223750  223752  223758  223764  223768  223770  223774  223780  223782  223788  223792  223794  223798  223800  223804  223806  223808  223809  223810  223812  223813  223814  223816  223818  223822  223824  223828  223830  223834  223840  223842  223848  223852  223854  223858  223864  223870  223872  223878  223882  223884  223890  223894  223900  223908  366461 

科目: 来源:不详 题型:解答题

已知二次函数是不为0的常数.
(1)除0以外,不论取何值时,这个二次函数的图像一定会经过两个定点,请你求出这两个定点;
(2)如果该二次函数的顶点不在直线的右侧,求的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有(  )
A.3个B.2个 C.1个D.0个

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,抛物线的对称轴是直线,且经过点(3,0),则的值为(      )
A.0B.-1C. 1D. 2

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,二次函数 的图像与轴有一个交点在0和1之间(不含0
和1),则的取值范围是(      )
A.B.C.D.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线yax2bxcx轴交于AB两点,与y轴交于点C,其中点Bx轴的正半轴上,点Cy轴的正半轴上,线段OBOC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求ABC三点的坐标;
(2)求此抛物线的表达式;
(3)连接ACBC,若点E是线段AB上的一个动点(与点A、点B不重合),过点EEFACBC于点F,连接CE,设AE的长为m,△CEF的面积为S,求Sm之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知:二次函数y=x2+bx+c与x轴相交于A(x1,0)、B(x2,0)两点,其顶点坐标为P(),AB=|x1-x2|,若S△APB=1,则b与c的关系式是(  ).
A.b2-4c+1=0B.b2-4c-1=0C.b2-4c+4=0D.b2-4c-4=0

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线)与轴相交于点,顶点为.直线 分别与轴,轴相交于两点,并且与直线相交于点.
(1)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(2)在抛物线)上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线与直线AB交于x轴上的一点A,和另一点B(4,n).点P是抛物线AB两点间部分上的一个动点(不与点AB重合),直线PQ与直线AB垂直,交直线AB于点Q

(1)求抛物线的解析式和cos∠BAO的值。
(2)设点P的横坐标为用含的代数式表示线段PQ的长,并求出线段PQ长的最大值;
(3)点E是抛物线上一点,过点E作EF∥AC,交直线AB与点F,若以E、F、A、C为顶点的四边形为平行四边形,直接写出相应的点E的坐标.

查看答案和解析>>

科目: 来源:不详 题型:单选题

对于的图象下列叙述正确的是(  )
A.顶点坐标为(-3,2)B.对称轴为直线=3
C.当=3时,有最大值2D.当≥3时增大而减小

查看答案和解析>>

同步练习册答案