相关习题
 0  223758  223766  223772  223776  223782  223784  223788  223794  223796  223802  223808  223812  223814  223818  223824  223826  223832  223836  223838  223842  223844  223848  223850  223852  223853  223854  223856  223857  223858  223860  223862  223866  223868  223872  223874  223878  223884  223886  223892  223896  223898  223902  223908  223914  223916  223922  223926  223928  223934  223938  223944  223952  366461 

科目: 来源:不详 题型:解答题

如图10,在平面直角坐标系中,正方形OABC边长是4,点A、C分别在y轴、x轴的正半轴上.动点P从点A开始,以每秒2个单位长度的速度在线段AB上来回运动.动点Q从点B开始沿B→C→O的方向,以每秒1个单位长度的速度向点O运动.P、Q两点同时出发,当点Q到达点O时,P、Q两点同时停止运动.设运动时间为t,△OPQ的面积为S.
(1)当t =1时,S =          
(2)当0≤ t ≤ 2时,求满足△BPQ的面积有最大值的P、Q两点坐标;
(3)在P、Q两点运动的过程中,是否存在某一时刻,使得S = 6.若存在,请直接写出所有符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知抛物线的对称轴为直线,点AB均在抛物线上,且ABx轴平行,其中点A的坐标为(0,3),则点B的坐标为( )

A(2,3)  B(3,2)   C(3,3)   D.(4,3)

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),有下列结论:①ac<0;②a+b=0;③4ac-b2>4a;④a+b+c<0.其中正确的结论有(   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源:不详 题型:填空题

将抛物线y=x2-2x向上平移3个单位,再向右平移4个单位得到的抛物线解析式为                            .

查看答案和解析>>

科目: 来源:不详 题型:填空题

已知抛物线y=ax2的开口向上,则直线y=ax-a一定不经过第         象限.

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知二次函数()的图象如图所示,有下列结论:①;②;③;④.其中,正确结论的个数是
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源:不详 题型:填空题

在一个不透明的盒子里装有正面分别标有数,-1,0、1、3的6张卡片,背面完全相同,洗匀后,从中任取两张,该卡片上的数分别作为点P 的横坐标和纵坐标,P落在抛物线与对称轴右侧所围成的区域内(不含边界)的概率是     。

查看答案和解析>>

科目: 来源:不详 题型:解答题

巴南区为了贯彻落实“森林重庆”,深入开展“绿化长江—重庆行动”。现决定对本区培育种植树苗的农民实施政府补贴,规定每种植一亩树苗一次性补贴农民若干元,随着补贴数额的不断增大,生产规模也不断增加,但每亩树苗的收益会相应降低。经调查,种植亩数y(亩)、每亩树苗的收益z(元)与补贴树额x(元)之间的一次函数关系如下表:

(1)分别求出政府补贴政策实施后种植亩数y、每亩树苗的收益z与政府补贴数额x之间的函数关系式;
(2)要使我区种植树苗的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值和此时种植的亩数;(总收益=种植亩数每亩树苗的收益)
(3)在取得最大收益的情况下,经市场调查,培育种植水果类树苗经济效益更好,今年该地区决定用种植树苗总面积m﹪的土地种植水果类树苗,因环境和经济等因素的制约,种植水果类树苗的面积不超过300亩 .经测算,种植水果类树苗需用的支架、塑料膜等材料每亩费用为2700元,此外还需购置喷灌设备,这项费用(元)与种植水果类树苗面积(亩)的平方成正比例,比例系数为9.预计今年种植水果类树苗后的这部分土地的收益比没种植前的收益每亩增加了7500元,这样,该地区今年因种植水果类树苗而增加的收益(扣除材料费和设备费后)共570000元.求m的值.
(结果精确到个位,参考数据:

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.动点P在线段AB上从点A向终点B以每秒个单位的速度运动,设运动时间为t秒.在直线OB 上取两点M、N作等边△PMN.
(1)求当等边△PMN的顶点M运动到与点O重合时t的值.
(2)求等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在Rt△AOB 内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
(4)在(3)中,设PN与EC的交点为R,是否存在点R,使△ODR是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知二次函数y=x2-4x+5的顶点坐标为【   】
A.(-2,-1)B.(2,1)C.(2,-1)D.(-2,1)

查看答案和解析>>

同步练习册答案