相关习题
 0  223839  223847  223853  223857  223863  223865  223869  223875  223877  223883  223889  223893  223895  223899  223905  223907  223913  223917  223919  223923  223925  223929  223931  223933  223934  223935  223937  223938  223939  223941  223943  223947  223949  223953  223955  223959  223965  223967  223973  223977  223979  223983  223989  223995  223997  224003  224007  224009  224015  224019  224025  224033  366461 

科目: 来源:不详 题型:填空题

如图所示的抛物线是二次函数y=ax2-(a2-1)x+1的图象,那么a的值是______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知函数y=x2-kx+3图象的顶点坐标为C,并与x轴相交于A、B,且AB=4,
(1)求实数k的值;
(2)若P是上述抛物线上的一个动点(除点C外),求使S△ABP=S△ABC成立的点P的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,点A在y轴上坐标为(0,3),点B在x轴上坐标为(10,0),BC⊥x轴,直线AC交x轴于M,tan∠ACB=2.
(1)求直线AC的解析式;
(2)点P在线段OB上,设OP=x,△APC的面积为S.请写出S关于x的函数关系式及自变量x的取值范围;
(3)探索:在线段OB上是否存在一点P,使得△APC是直角三角形?若存在,求出x的值,若不存在,请说明理由;
(4)当x=4时,设顶点为P的抛物线与y轴交于D,且△PAD是等腰三角形,求该抛物线的解析式.(直接写出结果)

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=kx+2与x轴交于点A,与y轴交于点B,与抛物线y=ax2+bx交于点C、D.已知点C的坐标为(2,1),点D的横坐标为
1
2

(1)求点D的坐标;
(2)求抛物线的函数表达式;
(3)抛物线在x轴上方部分是否存在一点P,使△POA的面积比△POB的面积大4?如果存在,求出点P的坐标;如果不存在,说明理由.
(4)将题中的抛物线y=ax2+bx沿x轴平移,当抛物线经过点B时,请直接写出平移的方向和距离.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知二次函数y=-
1
2
x2
+bx+c的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?

查看答案和解析>>

科目: 来源:不详 题型:解答题

平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、点B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;
(3)在(1)的条件下,对于实数c、d,我们可用min{c,d}表示c、d两数中较小的数,如min{3,-1}=-1.若关于x的函数y=min{ax2-4ax+4a+c,m(x-t)2-1(m>0)}的图象关于直线x=3对称,试讨论其与动直线y=
1
2
x+n
交点的个数.

查看答案和解析>>

科目: 来源:不详 题型:解答题

二次函数y=-
1
2
x2+
3
2
x+m-2
的图象与x轴交于A、两点(点A在点B左边),与y轴交于C点,且∠ACB=90°.
(1)求这个二次函数的解析式;
(2)设计两种方案:作一条与y轴不重合,与△ABC两边相交的直线,使截得的三角形与△ABC相似,并且面积为△BOC面积的
1
4
,写出所截得的三角形三个顶点的坐标(注:设计的方案不必证明).

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).
(1)求A、B的坐标;
(2)求抛物线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图1,点A为抛物线C1:y=
1
2
x2-2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.

查看答案和解析>>

同步练习册答案