相关习题
 0  223850  223858  223864  223868  223874  223876  223880  223886  223888  223894  223900  223904  223906  223910  223916  223918  223924  223928  223930  223934  223936  223940  223942  223944  223945  223946  223948  223949  223950  223952  223954  223958  223960  223964  223966  223970  223976  223978  223984  223988  223990  223994  224000  224006  224008  224014  224018  224020  224026  224030  224036  224044  366461 

科目: 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与y轴的交点为C,顶点为M,直线CM的解析式y=-x+2并且线段CM的长为2
2

(1)求抛物线的解析式.
(2)设抛物线与x轴有两个交点A(x1,0)、B(x2,0),且点A在B的左侧,求线段AB的长.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EFBD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知OB=2,点A和点B关于N(0,-2)成中心对称,抛物线y=ax2+bx+c经过点A、O、B三点.
(1)求抛物线的函数表达式;
(2)若点P是x轴上的一动点,从点O出发沿射线OB方向运动,圆P半径为
3
2
4
,速度为每秒1个单位,试求几秒后圆P与直线AB相切;
(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,抛物线y=-
3
8
x2-
3
4
x+3
与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.

查看答案和解析>>

科目: 来源:不详 题型:填空题

某涵洞的截面是抛物线型,如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=-
1
4
x2,当涵洞水面宽AB为12米时,水面到桥拱顶点O的距离为______米.

查看答案和解析>>

科目: 来源:不详 题型:解答题

松花江大桥的一个桥拱为抛物线形状,拱顶A离桥面50m,桥面上拱形钢梁之间的距离BC=120m,建立如图所示的直角坐标系.
(1)写出A,B,C三点的坐标;
(2)求该抛物线的解析式.

查看答案和解析>>

科目: 来源:不详 题型:解答题

今年,6月12日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华的问题.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知抛物线的顶点坐标是(2,-1),且经过点A(5,8)
(1)求该抛物线的解析式;
(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;
(3)设点P是x轴任一点,连接AP、BP.试求当AP+BP取得最小值时点P的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

一条抛物线y=
1
4
x2+mx+n经过点(0,
3
2
)与(4,
3
2
).
(1)求这条抛物线的解析式,并写出它的顶点坐标;
(2)现有一半径为1,圆心P在抛物线上运动的动圆,当⊙P与坐标轴相切时,求圆心P的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图1,Rt△ABC中,∠A=90°,tanB=
3
4
,点P在线段AB上运动,点Q、R分别在线段BC、AC上,且使得四边形APQR是矩形.设AP的长为x,矩形APQR的面积为y,已知y是x的函数,其图象是过点(12,36)的抛物线的一部分(如图2所示).

(1)求AB的长;
(2)当AP为何值时,矩形APQR的面积最大,并求出最大值.
为了解决这个问题,孔明和研究性学习小组的同学作了如下讨论:
张明:图2中的抛物线过点(12,36)在图1中表示什么呢?
李明:因为抛物线上的点(x,y)是表示图1中AP的长与矩形APQR面积的对应关系,那么,(12,36)表示当AP=12时,AP的长与矩形APQR面积的对应关系.
赵明:对,我知道纵坐标36是什么意思了!
孔明:哦,这样就可以算出AB,这个问题就可以解决了.请根据上述对话,帮他们解答这个问题.

查看答案和解析>>

同步练习册答案