相关习题
 0  223866  223874  223880  223884  223890  223892  223896  223902  223904  223910  223916  223920  223922  223926  223932  223934  223940  223944  223946  223950  223952  223956  223958  223960  223961  223962  223964  223965  223966  223968  223970  223974  223976  223980  223982  223986  223992  223994  224000  224004  224006  224010  224016  224022  224024  224030  224034  224036  224042  224046  224052  224060  366461 

科目: 来源:不详 题型:解答题

如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=-
3
3
x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.

查看答案和解析>>

科目: 来源:不详 题型:填空题

抛物线的图象如图,则它的函数表达式是______.当x______时,y>0.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,二次函数y=-2x2+bx+c的图象经过点A(-3,0)和点B(0,6).
(1)求此二次函数的解析式;
(2)将这个二次函数的图象向右平移5个单位后的顶点设为C,直线BC与x轴相交于点D,求∠ABD的正弦值;
(3)在第(2)小题的条件下,联结OC,试探究直线AB与OC的位置关系,并说明理由.

查看答案和解析>>

科目: 来源:不详 题型:填空题

已知二次函数y=ax2(a≥1)的图象上两点A,B的横坐标分别为-1,2,O是坐标原点,如果△AOB是直角三角形,则△AOB的周长为______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在城市繁华中心地带的商铺内,放置统一尺寸大小的“格子柜”,任何人只需每月支付一定的费用,就可以租用一个柜子寄卖自己的物品,相当于拥有自己的一个“迷你实体店”,“格子店”以投入少、易操作为特点,吸引着众多淘宝店家.
张阿姨有格子柜40个,当每个格子柜的月租金为270元时,恰好全部租出.在此基础上,当每个格子柜的月租金提高10元时,格子柜就少租出一个,且没有租出的一个格子柜每月需支出费用20元,设每个格子柜的月租金为x(x≥270)元,月收益为y元(总收益=格子柜租金收入-未租出格子柜支出费用)
(1)求y关于x的函数关系;
(2)当月租金分别为300元和350元时,张阿姨的月收益分别是多少元?可以出租多少个格子柜?请你简单说明理由;
(3)若张阿姨某月出租格子柜的总收益为11100元,则她这个月出租了多少个格子柜?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2的外公切线,A、B为切点,且∠ACB=90°.以AB所在直线为轴,过点C且垂直于AB的直线为轴建立直角坐标系,已知AO=4,OB=1.
(1)分别求出A、B、C各点的坐标;
(2)求经过A、B、C三点的抛物线y=ax2+bx+c的解析式;
(3)如果⊙O1的半径是5,问这条抛物线的顶点是否落在两圆连心线O1O2上?如果在,请证明;如果不在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,有一个横截面是抛物线的运河,一次,运河管理员将一根长6m的钢管(AB)一端在运河底部A点,另一端露出水面并靠在运河边缘的B点,发现钢管4m浸没在水中(AC=4米),露出水面部分的钢管BC与水面部分的钢管BC与水面成30°的夹角(钢管与抛物线的横截面在同一平面内)
(1)以水面所在直线为x轴,建立如图所示的直角坐标系,求该运河横截面的抛物线解析式;
(2)若有一艘货船从当中通过,已知货船底部最宽处为12米,吃水深(即船底与水面的距离)为1米,此时货船是否能安全通过该运河?若能,请说明理由;若不能,则需上游开闸放水提高水位,当水位上升多少米时,货船能顺利通过运河?(船与河床之间的缝隙忽略不计)

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,工人师傅要用长2米宽10厘米的塑钢条作窗户内的横、纵梁(没有余料)要使窗户内的透光部分面积最大,问窗户的两边长分别为多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,已知二次函数y=(x-m)2-4m2(m>0)的图象与x轴交于A、B两点.
(1)写出A、B两点的坐标(坐标用m表示);
(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;
(3)在(2)的基础上,设以AB为直径的⊙M与y轴交于C、D两点,求CD的长.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图1,在平面直角坐标系中,等腰直角三角形OMN的斜边ON在x轴上,顶点M的坐标为(3,3),MH为斜边上的高.抛物线C:y=-
1
4
x2+nx
与直线y=
1
2
x
及过N点垂直于x轴的直线交于点D.点P(m,0)是x轴上一动点,过点P作y轴的平行线,交射线OM于点E.设以M、E、H、N为顶点的四边形的面积为S.
(1)直接写出点D的坐标及n的值;
(2)判断抛物线C的顶点是否在直线OM上?并说明理由;
(3)当m≠3时,求S与m的函数关系式;
(4)如图2,设直线PE交射线OD于R,交抛物线C于点Q,以RQ为一边,在RQ的右侧作矩形RQFG,其中RG=
3
2
,直接写出矩形RQFG与等腰直角三角形OMN重叠部分为轴对称图形时m的取值范围.

查看答案和解析>>

同步练习册答案