相关习题
 0  223905  223913  223919  223923  223929  223931  223935  223941  223943  223949  223955  223959  223961  223965  223971  223973  223979  223983  223985  223989  223991  223995  223997  223999  224000  224001  224003  224004  224005  224007  224009  224013  224015  224019  224021  224025  224031  224033  224039  224043  224045  224049  224055  224061  224063  224069  224073  224075  224081  224085  224091  224099  366461 

科目: 来源:不详 题型:解答题

如图,在直角坐标系中,正方形ABOD的边长为a,O为原点,点B在x轴的负半轴上,点D在y轴的正半轴上,直线OE的解析式为y=2x,直线CF过x轴上的一点C(-
3
5
a
,0)且与OE平行,现正方形以每秒
a
10
的速度匀速沿x轴正方向平行移动,设运动时间为t秒,正方形被夹在直线OE和CF间的部分的面积为S.
(1)当0≤t<4时,写出S与t的函数关系式;
(2)当4≤t≤5时,写出S与t的函数关系式,在这个范围内S有无最大值?若有,请求出最大值,若没有请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线y=
1
4
x2+1(如图所示).
(1)填空:抛物线的顶点坐标是(______,______),对称轴是______;
(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;
(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,二次函数y=x2+bx+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,顶点为M,△MAB为直角三角形,图象的对称轴为直线x=-2,点P是抛物线上位于A,C两点之间的一个动点,则△PAC的面积的最大值为(  )
A.
27
4
B.
11
2
C.
27
8
D.3

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,一次函数y=x+2的图象分别交轴、轴于A、B两点,O1为以OB为边长的正方形OBCD的对角线的交点.两动点P、Q同时从A点出发在四边形ABCD上运动,其中动点P以每秒
2
个单位长度的速度沿A→B→A运动后停止,动点Q以每秒2个单位长度的速度沿A→O→D→C→B运动.AO1交于轴于点E,设P、Q运动的时间为t秒.
(1)求经过A、B、C三点的抛物线的解析式;
(2)求出E点的坐标和S△ABE的值;
(3)当Q点运动在折线AD→DC上时,是否存在某一时刻t(秒),使得S△ABE:S△APQ=4:3?若存在,请确定t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度.他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直地接触地面和门的内壁,并测得AC=1m.小强画出了如图的草图,请你帮他算一算门的高度OE(精确到0.1m).

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线y=-x2-2x+a(a>0)与y轴相交于点A,顶点为M.直线y=
1
2
x+
1
2
a
与x轴相交于B点,与直线AM相交于N点;直线AM与x轴相交于C点
(1)求M的坐标与MA的解析式(用字母a表示);
(2)如图,将△NBC沿x轴翻折,若N点的对应点N′恰好落在抛物线上,求a的值;
(3)在抛物线y=-x2-2x+a(a>0)上是否存在一点P,使得以P、B、C、N为顶点的四边形是平行四边形?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知二次函数y=ax2+bx的图象经过点(2,0)、(-1,6)
(1)求二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF.下列结论:①BE+BF的值不变;②
BF
AF
=
BG
AG
,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论.

查看答案和解析>>

同步练习册答案