相关习题
 0  223937  223945  223951  223955  223961  223963  223967  223973  223975  223981  223987  223991  223993  223997  224003  224005  224011  224015  224017  224021  224023  224027  224029  224031  224032  224033  224035  224036  224037  224039  224041  224045  224047  224051  224053  224057  224063  224065  224071  224075  224077  224081  224087  224093  224095  224101  224105  224107  224113  224117  224123  224131  366461 

科目: 来源:不详 题型:解答题

如图,已知抛物线y=ax2+b经过点A(4,4)和点B(0,-4).C是x轴上的一个动点.
(1)求抛物线的解析式;
(2)若点C在以AB为直径的圆上,求点C的坐标;
(3)将点A绕C点逆时针旋转90°得到点D,当点D在抛物线上时,求出所有满足条件的点C的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线y=
1
2
x2-
3
2
mx-2m
交x轴于A(x1,0)、B(x2,0),交y轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

某大众汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的九折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同.
(1)求该款汽车的进价和标价分别是多少万元?
(2)若该款汽车的进价不变,按(1)中所求的标价出售,该店平均每月可售出这款汽车20辆;若每辆汽车每降价0.1万元,则每月可多售出2辆.求该款汽车降价多少万元出售每月获利最大?最大利润是多少?

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,从10米的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直),如果抛物线的最高点M距离1米,离地面
40
3
米,试求水流落在点B距墙的距离OB.

查看答案和解析>>

科目: 来源:不详 题型:解答题

如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线y=-
1
4
x2+bx+c
与x轴交于A、B,与y轴交于点C,连结AC、BC,D是线段OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF.若S△OBC=8,AC=BC
(1)求抛物线的解析式;
(2)求证:BF⊥AB;
(3)求∠FBE;
(4)当D点沿x轴正方向移动到点B时,点E也随着运动,则点E所走过的路线长是______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知抛物线y=ax2+bx-2经过(2,1)和(6,-5)两点.
(1)求抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,点P是在直线x=4右侧的此抛物线上一点,过点P作PM⊥x轴,垂足为M.若以A、P、M为顶点的三角形与△OCB相似,求点P的坐标;
(3)点E是直线BC上的一点,点F是平面内的一点,若要使以点O、B、E、F为顶点的四边形是菱形,请直接写出点F的坐标.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0.
(1)若t=-4,求抛物线的解析式,并指出此时抛物线的开口方向;
(2)如图,抛物线y=ax2+bx的对称轴经过点A,观察图象并回答:
y的最小值=______;
t的值=______;
当x>-3时,y随x的增大而______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

要修建一个圆形喷水池,在池中心竖直安装一根带有喷水头的水管.喷出的水所形成的水流的形状是抛物线,如果要求水流的最高点到水管的水平距离为1m,距离地面的高度为3m,水流落地处到水管的水平距离是3m,求这根带有喷水头的水管在地面以上的高度?

查看答案和解析>>

科目: 来源:不详 题型:解答题

(1)探究新知:
①如图1,已知ADBC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知ADBE,AD=BE,ABCDEF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案