科目: 来源: 题型:
如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).
(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
如图,△ABC的高AD为3,BC为4,直线EF∥BC,交线段AB于E,交线段AC于F,交AD于G,以EF为斜边作等腰直角三角形PEF(点P与点A在直线EF的异侧),设EF为x,△PEF与四边形BCEF重合部分的面积为y.
(1)求线段AG(用x表示);
(2)求y与x的函数关系式,并求x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
根据对宁波市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?
图① 图②
查看答案和解析>>
科目: 来源: 题型:
如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.
(1) 试判断DE与BD是否相等,并说明理由;
(2) 如果BC=6,AB=5,求BE的长.
查看答案和解析>>
科目: 来源: 题型:
如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点,AB⊥x轴于B,且S△ABO=,求:
(1)求这两个函数的解析式;
(2)求△AOC的面积;
(3)根据图象写出使一次函数的值大于反比例函数的值x的取值范围。
查看答案和解析>>
科目: 来源: 题型:
网格中每个小正方形的边长都是1.
(1)将图①中的格点三角形ABC平移,使点A平移至点A`,画出平移后的三角形;
(2)在图②中画一个格点三角形DEF,使△DEF∽△ABC,且相似比为2∶1;
(3)在图③中画一个格点三角形PQR,使△PQR∽△ABC,且相似比为∶1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com