科目: 来源: 题型:
有下面的判断:
①△ABC中,a2+b2≠c2,则△ABC不是直角三角形;②△ABC是直角三角形,∠C=90°,则a2+b2=c2;③若△ABC中,a2-b2=c2,则△ABC是直角三角形;④若△ABC是直角三角形,则(a+b)(a-b)=c2.以上判断正确的有 ( )
A.4个 B.3个 C.2个 D.1个
查看答案和解析>>
科目: 来源: 题型:
如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(12分)
(1)求证:PE=PF;
(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;
(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)
查看答案和解析>>
科目: 来源: 题型:
如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(12分)
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.
查看答案和解析>>
科目: 来源: 题型:
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(10分)
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(8分)
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com