相关习题
 0  263481  263489  263495  263499  263505  263507  263511  263517  263519  263525  263531  263535  263537  263541  263547  263549  263555  263559  263561  263565  263567  263571  263573  263575  263576  263577  263579  263580  263581  263583  263585  263589  263591  263595  263597  263601  263607  263609  263615  263619  263621  263625  263631  263637  263639  263645  263649  263651  263657  263661  263667  263675  366461 

科目: 来源: 题型:


下列计算正确的是(  )

    A.                       3a﹣2a=1                     B.                             a2+a5=a7   C. a2•a4=a6  D. (ab)3=ab3

查看答案和解析>>

科目: 来源: 题型:


用科学记数法表示927 000正确的是(  )

    A.                       9.27×106                      B.                             9.27×105   C. 9.27×104 D. 927×103

查看答案和解析>>

科目: 来源: 题型:


 (2014年黑龙江哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为(  )

    A.                       5℃ B.                       6℃ C.                       7℃ D.   8℃

查看答案和解析>>

科目: 来源: 题型:


如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.

(1)请直接写出A、B两点的坐标;

(2)求抛物线的解析式;

(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;

(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.

查看答案和解析>>

科目: 来源: 题型:


如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.

(1)求B、C两点的坐标;

(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;

(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.

查看答案和解析>>

科目: 来源: 题型:


为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:

 

租金(单位:元/台•时)

挖掘土石方量(单位:m3/台•时)

甲型挖掘机

100

60

乙型挖掘机

120

80

(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?

(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?

查看答案和解析>>

科目: 来源: 题型:


如图,△ABC的边AB为⊙O的直径,BC与圆交于点D,D为BC的中点,过D作DE⊥AC于E.

(1)求证:AB=AC;

(2)求证:DE为⊙O的切线;

(3)若AB=13,sinB=,求CE的长.

查看答案和解析>>

科目: 来源: 题型:


在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.

(1)从中任取一球,求抽取的数字为正数的概率;

(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;

(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.

查看答案和解析>>

科目: 来源: 题型:


如图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A(2,﹣3),C(0,2).

(1)求过点B的双曲线的解析式;

(2)若将等腰梯形OABC向右平移5个单位,问平移后的点C是否落在(1)中的双曲线上?并简述理由.

查看答案和解析>>

科目: 来源: 题型:


解方程:

查看答案和解析>>

同步练习册答案