相关习题
 0  263687  263695  263701  263705  263711  263713  263717  263723  263725  263731  263737  263741  263743  263747  263753  263755  263761  263765  263767  263771  263773  263777  263779  263781  263782  263783  263785  263786  263787  263789  263791  263795  263797  263801  263803  263807  263813  263815  263821  263825  263827  263831  263837  263843  263845  263851  263855  263857  263863  263867  263873  263881  366461 

科目: 来源: 题型:


不等式组的解集在数轴上表示为(     )

查看答案和解析>>

科目: 来源: 题型:


在平面直角坐标系中,点P(-2,3)的位置在(     )

A.第一象限

B.第二象限

C.第三象限

D.第四象限

查看答案和解析>>

科目: 来源: 题型:


如图,已知AB∥CD,∠A=70°,则∠1的度数是(     )

A. 70°B. 100°C. 110°  D. 130°

查看答案和解析>>

科目: 来源: 题型:


已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.

(1)求该抛物线的解析式及点M的坐标;

(2)连接ON,AC,证明:∠NOB=∠ACB;

(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;

(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.

查看答案和解析>>

科目: 来源: 题型:


如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).

(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;

(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?

3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF=S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:


如图,已知AB,AC分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.

(1)求证:△PCD是等腰三角形;

(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.

查看答案和解析>>

科目: 来源: 题型:


甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.

(1)分别求出y1,y2与x之间的关系式;

(2)当甲、乙两个商场的收费相同时,所买商品为多少件?

(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.

查看答案和解析>>

科目: 来源: 题型:


如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,点E在BC上,且∠AEB=60°.若AB=2,AD=1,求CD和CE的长.(注意:本题中的计算过程和结果均保留根号)

查看答案和解析>>

科目: 来源: 题型:


有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.

(1)请画出树状图并写出(m,n)所有可能的结果;

(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.

查看答案和解析>>

科目: 来源: 题型:


如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:

①∠AEF=∠BCE;

②AF+BC>CF;

③S△CEF=S△EAF+S△CBE

④若=,则△CEF≌△CDF.

其中正确的结论是  .(填写所有正确结论的序号)

查看答案和解析>>

同步练习册答案