相关习题
 0  263766  263774  263780  263784  263790  263792  263796  263802  263804  263810  263816  263820  263822  263826  263832  263834  263840  263844  263846  263850  263852  263856  263858  263860  263861  263862  263864  263865  263866  263868  263870  263874  263876  263880  263882  263886  263892  263894  263900  263904  263906  263910  263916  263922  263924  263930  263934  263936  263942  263946  263952  263960  366461 

科目: 来源: 题型:


下列运算正确的是

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:


下面的图形中,既是轴对称图形又是中心对称图形的是       

 

A.

B.

C.

D.

查看答案和解析>>

科目: 来源: 题型:


下列立体图形中,侧面展开图是扇形的是                  

 


查看答案和解析>>

科目: 来源: 题型:


的绝对值是                                        

   A.4             B.          C.           D.

查看答案和解析>>

科目: 来源: 题型:


 问题情境:如图1,直角三角板ABC中,∠C=90°,AC=BC,将一个用足够长的的细铁丝制作的直角的顶点D放在直角三角板ABC的斜边AB上,再将该直角绕点D旋转,并使其两边分别与三角板的AC边、BC边交于P、Q两点。

问题探究:(1)在旋转过程中,

①如图2,当AD=BD时,线段DP、DQ有何数量关系?并说明理由。

②如图3,当AD=2BD时,线段DP、DQ有何数量关系?并说明理由。

③根据你对①、②的探究结果,试写出当AD=nBD时,DP、DQ满足的数量关系为_______________(直接写出结论,不必证明)

(2)当AD=BD时,若AB=20,连接PQ,设△DPQ的面积为S,在旋转过程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,请说明理由。

                图1                 图2                     图3

查看答案和解析>>

科目: 来源: 题型:


已知抛物线与x轴交于点、C,与y轴交于点B(0,3),抛物线的顶点为p。

(1)求抛物线的解析式;

(2)若抛物线向下平移k个单位后经过点(-5,6)。

①求k的值及平移后抛物线所对应函数的最小值;

②设平移后抛物线与y轴交于点D,顶点为Q,点M是平移后的抛物线上的一个动点。请探究:当点M在何处时,△MBD的而积是△MPQ面积的2倍?求出此时点M的坐标。

查看答案和解析>>

科目: 来源: 题型:


 如图所示,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CO∥AB交⊙O于点D,连接BD。

(1)猜想AC与⊙O的位置关系,并证明你的猜想;

(2)试判断四边形BOCD的形状,并证明你的判断;

(3)已知AC=6,求扇形OBC围成的圆锥的底面圆半径。

查看答案和解析>>

科目: 来源: 题型:


 在某水果店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示。

(1)下列关于三段函数图象的说法不正确的是(  )

A. 第①段函数图象表示数量不多于5千克时,单价为10元。

B. 第③段函数图象表示数量不少于11千克时,单价为8.8元。

C. 第②段函数图象可知:当一次性数量多于5千克但不多于11千克时,每多买1千克,单价就降低1.2元。

(2)求图中第②段函数图象的解析式,并指出x的取值范围。

(3)某天老李计划用90元去该店买A种水果,问老李一次性(或最多)能买回多少千克A种水果?

查看答案和解析>>

科目: 来源: 题型:


如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题:

(1)求∠OGF的度数;

(2)求座面EF与地面之间的距离。(可用计算器计算,结果保留两个有效数字,参考数据:sin71.5°≈0.948,cos71.5°≈0.317,tan71.5°≈2.989

图1             图2

查看答案和解析>>

科目: 来源: 题型:


 为响应吉安市2014年创建国家级卫生城市的号召,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图。

(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整;

(2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率。

查看答案和解析>>

同步练习册答案