相关习题
 0  283737  283745  283751  283755  283761  283763  283767  283773  283775  283781  283787  283791  283793  283797  283803  283805  283811  283815  283817  283821  283823  283827  283829  283831  283832  283833  283835  283836  283837  283839  283841  283845  283847  283851  283853  283857  283863  283865  283871  283875  283877  283881  283887  283893  283895  283901  283905  283907  283913  283917  283923  283931  366461 

科目: 来源: 题型:填空题

4.如图,一次函数y=-x+b与反比例函数y=$\frac{4}{x}$(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.
(1)b=m+$\frac{4}{m}$(用含m的代数式表示);
(2)若S△OAF+S四边形EFBC=4,则m的值是$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.分解因式:am-3a=a(m-3).

查看答案和解析>>

科目: 来源: 题型:填空题

2.抛物线y=ax2+bx+c的对称轴为直线x=2,与x轴的一个交点坐标为(-1,0),则一元二次方程ax2+bx+c=0的解为x1=-1,x2=5;若a>0,则一元二次不等式ax2+bx+c>0的解为x<-1或x>5.

查看答案和解析>>

科目: 来源: 题型:填空题

1.由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)
(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是$\frac{8}{3}$米.
(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是3$\sqrt{7}$米.

查看答案和解析>>

科目: 来源: 题型:填空题

20.如图所示的两段弧中,位于上方的弧半径为r,下方的弧半径为r,则r<r.(填“<”“=”“>”)

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.
(1)求证:$\frac{AF}{AM}$=$\frac{\sqrt{2}}{2}$;
(2)求证:AF⊥FM;
(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则$\frac{AB}{BD}$的值为(  )
A.$\frac{4\sqrt{2}}{5}$B.$\frac{\sqrt{34}}{5}$C.$\frac{5\sqrt{2}}{8}$D.$\frac{20\sqrt{2}}{23}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.
(1)试求抛物线的解析式;
(2)记抛物线顶点为D,求△BCD的面积;
(3)若直线y=-$\frac{1}{2}$x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

16.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为(  )
A.25:9B.5:3C.$\sqrt{5}$:$\sqrt{3}$D.5$\sqrt{5}$:3$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.如图所示,在菱形ABCD中,BC=2,∠B=60°,E为BC的中点,点F在AB边上,连接EF,将△BEF沿EF翻折,使点B落在点B′处,连接AB′,则AB′的最小值是(  )
A.2-$\sqrt{3}$B.$\sqrt{3}$+1C.2+$\sqrt{3}$D.$\sqrt{3}$-1

查看答案和解析>>

同步练习册答案