相关习题
 0  283777  283785  283791  283795  283801  283803  283807  283813  283815  283821  283827  283831  283833  283837  283843  283845  283851  283855  283857  283861  283863  283867  283869  283871  283872  283873  283875  283876  283877  283879  283881  283885  283887  283891  283893  283897  283903  283905  283911  283915  283917  283921  283927  283933  283935  283941  283945  283947  283953  283957  283963  283971  366461 

科目: 来源: 题型:解答题

10.已知四边形ABCD,顶点A,B的坐标分别为(m,0),(n,0),当顶点C落在反比例函数的图象上,我们称这样的四边形为“轴曲四边形ABCD”,顶点C称为“轴曲顶点”.小明对此问题非常感兴趣,对反比例函数为y=$\frac{2}{x}$时进行了相关探究.

(1)若轴曲四边形ABCD为正方形时,小明发现不论m取何值,符合上述条件的轴曲正方形只有两个,且一个正方形的顶点C在第一象限,另一个正方形的顶点C1在第三象限.
①如图1所示,点A的坐标为(1,0),图中已画出符合条件的一个轴曲正方形ABCD,易知轴曲顶点C的坐标为(2,1),请你画出另一个轴曲正方形AB1C1D1,并写出轴曲顶点C1的坐标为(-1,-2);
②小明通过改变点A的坐标,对直线CC1的解析式y﹦kx+b进行了探究,可得k﹦1,b(用含m的式子表示)﹦-m;
(2)若轴曲四边形ABCD为矩形,且两邻边的比为1:2,点A的坐标为(2,0),求出轴曲顶点C的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,在直角坐标系中,已知点A(0,2),点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.
(1)填空:点D的坐标为((-1,3)),点E的坐标为((-3,2));
(2)若抛物线y=-$\frac{1}{2}$x2+bx+c经过A,D,E三点,求该抛物线的表达式;
(3)若正方形和抛物线均以每秒$\sqrt{5}$个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.
①在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(1≤t≤$\frac{3}{2}$)的函数关系式;
②运动停止时,求抛物线的顶点坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.
(1)求证:直线DF与⊙O相切;
(2)求证:△BED∽△BCA;
(3)若AE=7,BC=6,求AC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DB=EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

6.P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”. 
(1)⊙O的半径为5,OP=3.
①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为16;
②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙O的“幂值”的取值范围.
(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围不填;
(3)在平面直角坐标系xOy中,⊙O的半径为4,若在直线y=$\frac{{\sqrt{3}}}{3}$x+b上存在点P,使得点P关于⊙O的“幂值”为13,请写出b的取值范围-2≤b≤2.

查看答案和解析>>

科目: 来源: 题型:解答题

5.(1)计算:($\frac{1}{3}$)-1-|-2|+$\sqrt{16}$-($\sqrt{3}$+1)0
(2)化简:$\frac{ab+c}{a+b}+\frac{{{a^2}-c}}{a+b}$.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中:
①d没有最大值;
②d没有最小值;
③-1<x<3时,d随x的增大而增大;
④满足d=5的点P有四个.  
其中正确结论的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.
(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证:△ADE∽△DCF;
(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,$\frac{DE}{CF}=\frac{AD}{CD}$成立?并证明你的结论;
(3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,请直接写出$\frac{DE}{CF}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴与x轴的交点为D,已知A(-1,0),C(0,2)且tan∠ABC=$\frac{1}{2}$;
(1)求抛物线的解析式;
(2)判断△ACD的形状,并说明理由;
(3)在第一象限的抛物线上是否存在一点P,使△BCP的面积最大,如存在,求出P点坐标和最大面积S.

查看答案和解析>>

科目: 来源: 题型:解答题

1.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;
(3)如图3,点D、B分别在x轴和y轴上,且D(8,0),B(0,6),点A在BD 边上,且AB=2.试在x轴上找一点C,使ABOC是对等四边形,请直接写出所有满足条件的C点坐标.

查看答案和解析>>

同步练习册答案