相关习题
 0  283815  283823  283829  283833  283839  283841  283845  283851  283853  283859  283865  283869  283871  283875  283881  283883  283889  283893  283895  283899  283901  283905  283907  283909  283910  283911  283913  283914  283915  283917  283919  283923  283925  283929  283931  283935  283941  283943  283949  283953  283955  283959  283965  283971  283973  283979  283983  283985  283991  283995  284001  284009  366461 

科目: 来源: 题型:解答题

18.阅读下列材料并回答问题:
材料1:如果一个三角形的三边长分别为a,b,c,记$p=\frac{a+b+c}{2}$,那么三角形的面积为$S=\sqrt{p(p-a)(p-b)(p-c)}$.    ①
古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.
我国南宋数学家秦九韶(约1202--约1261),曾提出利用三角形的三边求面积的秦九韶公式:$S=\sqrt{\frac{1}{4}[{{a^2}{b^2}-{{({\frac{{{a^2}+{b^2}-{c^2}}}{2}})}^2}}]}$.     ②
下面我们对公式②进行变形:$\sqrt{\frac{1}{4}[{{a^2}{b^2}-{{({\frac{{{a^2}+{b^2}-{c^2}}}{2}})}^2}}]}=\sqrt{{{({\frac{1}{2}ab})}^2}-{{({\frac{{{a^2}+{b^2}-{c^2}}}{4}})}^2}}$=$\sqrt{({\frac{1}{2}ab+\frac{{{a^2}+{b^2}-{c^2}}}{4}})({\frac{1}{2}ab-\frac{{{a^2}+{b^2}-{c^2}}}{4}})}$=$\sqrt{\frac{{2ab+{a^2}+{b^2}-{c^2}}}{4}•\frac{{2ab-{a^2}-{b^2}+{c^2}}}{4}}$=$\sqrt{\frac{{{{(a+b)}^2}-{c^2}}}{4}•\frac{{{c^2}-{{(a-b)}^2}}}{4}}$=$\sqrt{\frac{a+b+c}{2}•\frac{a+b-c}{2}•\frac{a+c-b}{2}•\frac{b+c-a}{2}}$=$\sqrt{p(p-a)(p-b)(p-c)}$.
这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦--秦九韶公式.
问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.
(1)求△ABC的面积;
(2)求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:解答题

17.先化简,再求值:$({\frac{1}{x-y}+\frac{2}{{{x^2}-xy}}})÷\frac{x+2}{2x}$,其中实数x、y满足$y=\sqrt{x-2}-\sqrt{4-2x}+1$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,已知抛物线y=ax2+bx+c经过点A(-3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.
(1)求出二次函数的表达式以及点D的坐标;
(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;
(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在直角坐标系中,直线y=-$\frac{1}{2}$x与反比例函数y=$\frac{k}{x}$的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.
(1)求反比例函数的表达式;
(2)将直线y=-$\frac{1}{2}$x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.

查看答案和解析>>

科目: 来源: 题型:解答题

14.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:
 组别 分组 频数(人数) 频率
 1 10≤t<30  0.16
 2 30≤t<50 20 
 3 50≤t<70  0.28
 4 70≤t<90 6 
 5 90≤t<110  
(1)将表中空格处的数据补全,完成上面的频数、频率分布表;
(2)请在给出的平面直角坐标系中画出相应的频数直方图;
(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.

(1)求证:AC是⊙O的切线;
(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.

查看答案和解析>>

科目: 来源: 题型:填空题

12.如图,在平面直角坐标系中,一条直线与反比例函数y=$\frac{8}{x}$(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=$\frac{2}{x}$(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为$\frac{9}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.如图,在△ABC中,∠C=90°,AC=BC=$\sqrt{2}$,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=$\sqrt{3}$-1.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知点P(a+1,-$\frac{a}{2}$+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,一次函数y=kx+b(k<0)与反比例函数y=$\frac{m}{x}$的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)
(1)求反比例函数的解析式;
(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.

查看答案和解析>>

同步练习册答案