相关习题
 0  283968  283976  283982  283986  283992  283994  283998  284004  284006  284012  284018  284022  284024  284028  284034  284036  284042  284046  284048  284052  284054  284058  284060  284062  284063  284064  284066  284067  284068  284070  284072  284076  284078  284082  284084  284088  284094  284096  284102  284106  284108  284112  284118  284124  284126  284132  284136  284138  284144  284148  284154  284162  366461 

科目: 来源: 题型:解答题

3.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.
(1)求证:△ACF∽△DAE;
(2)若S△AOC=$\frac{\sqrt{3}}{4}$,求DE的长;
(3)连接EF,求证:EF是⊙O的切线.

查看答案和解析>>

科目: 来源: 题型:解答题

2.某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:
(1)这次活动一共调查了250名学生;
(2)补全条形统计图;
(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于108度;
(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是480人.

查看答案和解析>>

科目: 来源: 题型:填空题

1.如图,矩形ABCD中,对角线AC=2$\sqrt{3}$,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,已知抛物线y=$\frac{1}{3}$x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(-9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB于点E,DF⊥BC于点F.
(1)如图1,连接AC分别交DE、DF于点M、N,求证:MN=$\frac{1}{3}$AC;
(2)如图2,将△EDF以点D为旋转中心旋转,其两边DE′、DF′分别与直线AB、BC相交于点G、P,连接GP,当△DGP的面积等于3$\sqrt{3}$时,求旋转角的大小并指明旋转方向.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)

查看答案和解析>>

科目: 来源: 题型:填空题

17.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:
测试项目创新能力综合知识语言表达
测试成绩(分数)708092
将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是77.4分.

查看答案和解析>>

科目: 来源: 题型:选择题

16.如图,在Rt△ABC中,∠A=30°,BC=2$\sqrt{3}$,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是(  )
A.$\frac{15\sqrt{3}}{4}$-$\frac{3}{2}π$B.$\frac{15\sqrt{3}}{2}$-$\frac{3}{2}π$C.$\frac{7\sqrt{3}}{4}$-$\frac{π}{6}$D.$\frac{7\sqrt{3}}{2}$-$\frac{π}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是(  )
A.10B.8$\sqrt{2}$C.4$\sqrt{13}$D.2$\sqrt{41}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知二次函数y=x2-(2k+1)x+k2+k(k>0)
(1)当k=$\frac{1}{2}$时,求这个二次函数的顶点坐标;
(2)求证:关于x的一元二次方程x2-(2k+1)x+k2+k=0有两个不相等的实数根;
(3)如图,该二次函数与x轴交于A、B两点(A点在B点的左侧),与y轴交于C点,P是y轴负半轴上一点,且OP=1,直线AP交BC于点Q,求证:$\frac{1}{{O{A^2}}}+\frac{1}{{A{B^2}}}=\frac{1}{{A{Q^2}}}$.

查看答案和解析>>

同步练习册答案