相关习题
 0  284146  284154  284160  284164  284170  284172  284176  284182  284184  284190  284196  284200  284202  284206  284212  284214  284220  284224  284226  284230  284232  284236  284238  284240  284241  284242  284244  284245  284246  284248  284250  284254  284256  284260  284262  284266  284272  284274  284280  284284  284286  284290  284296  284302  284304  284310  284314  284316  284322  284326  284332  284340  366461 

科目: 来源: 题型:解答题

5.阅读理解
在⊙I中,弦AF与DE相交于点Q,则AQ•QF=DQ•QE.你可以利用这一性质解决问题.
问题解决
如图,在平面直角坐标系中,等边△ABC的边BC在x轴上,高AO在y轴的正半轴上,点Q(0,1)是等边△ABC的重心,过点Q的直线分别交边AB、AC于点D、E,直线DE绕点Q转动,设∠OQD=α(60°<α<120°),△ADE的外接圆⊙I交y轴正半轴于点F,连接EF.
(1)填空:AB=2$\sqrt{3}$;
(2)在直线DE绕点Q转动的过程中,猜想:$\frac{AD}{DQ}$与$\frac{AE}{QE}$的值是否相等?试说明理由.
(3)①求证:AQ2=AD•AE-DQ•QE;
②记AD=a,AE=b,DQ=m,QE=m(a、b、m、n均为正数),请直接写出mn的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,抛物线$y=-\frac{5}{12}{x^2}-\frac{7}{6}x+c$与x轴交于点A、B(点A在点B的左侧)与y轴交于点C(0,8),点D是抛物线上的动点,直线AD与y轴交于点K.
(1)填空:c=8;
(2)若点D的横坐标为2,连接OD、CD、AC,以AC为直径作⊙M,试判断点D与⊙M的位置关系,并说明理由.
(3)在抛物线$y=-\frac{5}{12}{x^2}-\frac{7}{6}x+c$上是否存在点D,使得∠BAC=2∠BAD?若存在,试求出点D的坐标;若不存在,试说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知:x为实数,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.请你在学习,理解上述定义的基础上,解决下列问题:设函数y=x-[x].
(1)当x=2.15时,求y=x-[x]的值;
(2)当0<x<2,求函数y=x-[x]的表达式,并画出函数图象;
(3)在(2)的条件下,平面直角坐标系xOy中,以O为圆心,r为半径作圆,且r≤2,该圆与函数y=x-[x]恰有一个公共点,请直接写出r的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

2.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为(  )
A.7sinα米B.7cosα米C.7tanα米D.(7+α)米

查看答案和解析>>

科目: 来源: 题型:选择题

1.如图所示,以正方形ABCD的顶点A为圆心的弧恰好与对角线BD相切,以顶点B为圆心,正方形的边长为半径的弧,已知正方形的边长为2,则图中阴影部分的面积为(  )
A.π-2B.$\frac{π}{2}-1$C.$\frac{5π}{4}-1$D.$\frac{3π}{4}-1$

查看答案和解析>>

科目: 来源: 题型:解答题

20.在平面直角坐标系中,已知点A(-1,0),B(-2,2),请在图中画出线段AB,并画出线段AB绕点O逆时针旋转90°后的图形.

查看答案和解析>>

科目: 来源: 题型:选择题

19.△ABC,D、E分别为AB、AC中点,S△ABC=8,则△DEC的面积为(  )
A.6B.4C.2D.1

查看答案和解析>>

科目: 来源: 题型:选择题

18.下列各数中比1小的数是(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.1D.0

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2-x1|2+|y2-y1|2,所以A,B两点间的距离为.AB=$\sqrt{|{x}_{1}-{x}_{2}{|}^{2}+|{y}_{1}-{y}_{2}{|}^{2}}$.
我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x-0|2+|y-0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2
(1)问题拓展:
如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x-a)2+(y-b)2=r2
(2)综合应用:
如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=$\frac{3}{4}$,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.
①证明AB是⊙P的切线;
②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写
出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1)写出A、B两地之间的距离;
(2)求出点M的坐标,并解释该点坐标所表示的实际意义;
(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.

查看答案和解析>>

同步练习册答案