相关习题
 0  284272  284280  284286  284290  284296  284298  284302  284308  284310  284316  284322  284326  284328  284332  284338  284340  284346  284350  284352  284356  284358  284362  284364  284366  284367  284368  284370  284371  284372  284374  284376  284380  284382  284386  284388  284392  284398  284400  284406  284410  284412  284416  284422  284428  284430  284436  284440  284442  284448  284452  284458  284466  366461 

科目: 来源: 题型:解答题

2.如图,在矩形ABCD中,AB=8k,BC=5k(k为常数,且k>0),动点P在AB边上(点P不与A、B重合),点Q、R分别在BC、DA边上,且AP:BQ:DR=3:2:1.点A关于直线PR的对称点为A′,连接PA′、RA′、PQ.
(1)若k=4,PA=15,则四边形PARA′的形状是正方形;
(2)设DR=x,点B关于直线PQ的对称点为B′点.
①记△PRA′的面积为S1,△PQB′的面积为S2.当S1<S2时,求相应x的取值范围及S2-S1的最大值;(用含k的代数式表示)
②在点P的运动过程中,判断点B′能否与点A′重合?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,抛物线y=-$\frac{1}{2}$x2+mx+2与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴直线x=$\frac{3}{2}$交x轴于点D.
(1)求m的值;
(2)在抛物线的对称轴上找出点P,使△PCD是以CD为腰的等腰三角形,直接写出P点的坐标;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,与x轴相交于点H,连接CF、BF、OE,当四边形CDBF的面积最大时,请你说明四边形OCFE的形状.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,抛物线y=-x2+bx+c的顶点为Q,抛物线与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线上求一点P,使得S△PAB=S△ABC,求出点P的坐标:
(3)若点D是第一象限抛物线上的一个动点,过点D作DE⊥x轴,垂足为E.有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长.”这个同学的说法正确吗?请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

19.在下列性质中,矩形具有而菱形不一定有的是(  )
A.四个角是直角B.四条边相等C.对角线互相垂直D.对角线互相平分

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图.已知△ABC的内切圆半径为1,外接圆半径为$\frac{5}{2}$,I是△ABC的内心,AI的延长线交△ABC的外接圆于点P,则IA•IP的值为(  )
A.$\frac{5}{2}$B.$\frac{25}{4}$C.5D.$\frac{25}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.若方程组$\left\{\begin{array}{l}{x+y=3m①}\\{x-y=7m②}\end{array}\right.$的解也是二元一次方程3x+5y=10的解,则m的值应为(  )
A.-2B.1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目: 来源: 题型:选择题

16.设圆、等腰直角三角形、正方形和等腰三角形边界上的一个定点为Q(如四个选项中的图形),动点P从点Q出发,在其边界上按顺时针方向匀速运动一周后又回到起点Q.设点P运动的时间是t,点P和点Q之间的距离是d,如图是d与t之间函数关系的大致图象,则该图形可能是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

15.定义:长宽比为$\sqrt{n}$:1(n为正整数)的矩形称为$\sqrt{n}$矩形.
(1)如图1所示,将一张矩形纸片ABCD进行如下操作:将点C沿着过点D的直线折叠,使折叠后的点C落在边AD上的点E处,折痕为DF,通过测量发现DF=AD,则矩形ABCD是$\sqrt{2}$矩形吗?请说明理由.
(2)我们可以通过折叠的方式折出一个$\sqrt{2}$矩形,如图2所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.所得四边形BCEF为$\sqrt{2}$矩形,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

14.如图,点P(t,0)(t>0)是x轴正半轴上的一点,是以原点为圆心,半径为1的$\frac{1}{4}$圆,且A(-1,0),B(0,1),点M是$\widehat{AB}$上的一个动点,连结PM,作直角△MPM1,并使得∠MPM1=90°,∠PMM1=60°,我们称点M1为点M的对应点.
(1)设点A和点B的对应点为A1和B1,当t=1时,求A1的坐标(1,2$\sqrt{3}$);B1的坐标(1+$\sqrt{3}$,$\sqrt{3}$).
(2)当P是x轴正半轴上的任意一点时,点M从点A运动至点B,求M1的运动路径长$\frac{\sqrt{3}π}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知一次函数的图象经过(2,5)和(-1,2)两点.
(1)求此一次函数的解析式;
(2)用描点法在坐标系中画出这个函数的图象,求函数图象与x轴交点A、与y轴交点B的坐标;
(3)求△AOB的面积.

查看答案和解析>>

同步练习册答案