9.“十字相乘法”能把二次三项式分解因式,对于形如ax
2+bxy+cy
2的关于x,y的二次三项式来说,方法的关键是把x
2项系数a分解成两个因数a
1,a
2的积,即a=a
1•a
2,把y
2项系数c分解成两个因数c
1,c
2的积,即c=c
1•c
2,并使a
1•c
2+a
2•c
1正好等于xy项的系数b,那么可以直接写成结果:ax
2+bxy+cy
2=(a
1x+c
1y)(a
2x+c
2y).
例:分解因式:x
2-2xy-8y
2.
解:如图1,其中1=1×1,-8=(-4)×2,而-2=1×2+1×(-4).
∴x
2-2xy-8y
2=(x-4y)(x+2y)
而对于形如ax
2+bxy+cy
2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);
例:分解因式:x
2+2xy-3y
2+3x+y+2
解:如图3,其中1=1×1,-3=(-1)×3,2=1×2;
而2=1×3+1×(-1),1=(-1)×2+3×1,3=1×2+1×1;
∴x
2+2xy-3y
2+3x+y+2=(x-y+1)(x+3y+2)
请同学们通过阅读上述材料,完成下列问题:
(1)分解因式:
①6x
2-17xy+12y
2=(3x-4y)(2x-3y)
②2x
2-xy-6y
2+2x+17y-12=(x-2y+3)(2x+3y-4)
③x
2-xy-6y
2+2x-6y=(x-3y)(x+2y+2)
(2)若关于x,y的二元二次式x
2+7xy-18y
2-5x+my-24可以分解成两个一次因式的积,求m的值.