相关习题
 0  284442  284450  284456  284460  284466  284468  284472  284478  284480  284486  284492  284496  284498  284502  284508  284510  284516  284520  284522  284526  284528  284532  284534  284536  284537  284538  284540  284541  284542  284544  284546  284550  284552  284556  284558  284562  284568  284570  284576  284580  284582  284586  284592  284598  284600  284606  284610  284612  284618  284622  284628  284636  366461 

科目: 来源: 题型:选择题

3.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是(  )
A.△EGH为等腰三角形B.△EGF为等边三角形
C.四边形EGFH为菱形D.△EHF为等腰三角形

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,A、B两点在函数y=$\frac{y}{x}$(x>0)的图象上.
(1)求k的值及直线AB的解析式;
(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若点(m,n)是第一象限内位于直线AB的图象下方的格点,求这个点在图中阴影部分(不包括边界)内部的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

1.如图,直线l:y=-$\frac{4}{3}$x,点A1坐标为(-3,0).过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为(-$\frac{{5}^{2015}}{{3}^{2014}}$,0).

查看答案和解析>>

科目: 来源: 题型:填空题

20.如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=$\frac{{k}_{2}}{x}$的图象相交于A(-2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+$\frac{1}{2}$n=0;③S△AOP=S△BOQ;④不等式k1x+b$>\frac{{k}_{2}}{x}$的解集是x<-2或0<x<1,其中正确的结论的序号是②③④.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知a+b=8,a2b2=4,则$\frac{{a}^{2}+{b}^{2}}{2}$-ab=28或36.

查看答案和解析>>

科目: 来源: 题型:填空题

18.P为正整数,现规定P!=P(P-1)(P-2)…×2×1.若m!=24,则正整数m=4.

查看答案和解析>>

科目: 来源: 题型:选择题

17.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(  )
A.60B.70C.80D.90

查看答案和解析>>

科目: 来源: 题型:解答题

16.请阅读下列材料,并完成相应的任务:
阿基米德折弦定理
阿基米德(archimedes,公元前287-公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
阿拉伯Al-Binmi(973-1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.
阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是$\widehat{ABC}$的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是$\widehat{ABC}$的中点,
∴MA=MC.

任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)填空:如图3,已知等边△ABC内接于⊙O,AB=2,D为$\widehat{AC}$上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是2+2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.在一次数学课上,张老师布置了一项作业:以Rt△ABC(如图所示)的两直角边AB,BC为邻边作矩形ABCD,下面是小钟和小国各自的作法:
小钟作法:
(1)作AC的垂直平分线MN,垂足为点O;
(2)连接BO,并延长BO至点D,使DO=BO;
(3)连接AD,CD
所以,四边形ABCD就是所要求作的矩形 
小国作法:
(1)分别以A,C为圆心,以BC,AB为半径作弧,两弧交于点D;
(2)连接AD,CD.
所以,四边形ABCD就是所要求作的矩形.
小孟说:“他们的作法都错误.”你的观点是(  )
A.小钟的作法正确B.小国的作法正确
C.小钟和小国的作法都正确D.赞同小孟的观点

查看答案和解析>>

科目: 来源: 题型:解答题

14.科技馆是少年儿童节假日游玩的乐园.
如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=$\left\{\begin{array}{l}{a{x}^{2},0≤x≤30}\\{b(x-90)^{2}+n,30≤x≤90}\end{array}\right.$,10:00之后来的游客较少可忽略不计.
(1)请写出图中曲线对应的函数解析式;
(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?

查看答案和解析>>

同步练习册答案