相关习题
 0  284527  284535  284541  284545  284551  284553  284557  284563  284565  284571  284577  284581  284583  284587  284593  284595  284601  284605  284607  284611  284613  284617  284619  284621  284622  284623  284625  284626  284627  284629  284631  284635  284637  284641  284643  284647  284653  284655  284661  284665  284667  284671  284677  284683  284685  284691  284695  284697  284703  284707  284713  284721  366461 

科目: 来源: 题型:选择题

11.如图,在△ABC中,AB=6,BC=3,CA=7,I为△ABC的内心,连接CI并延长交AB于点D.记△CAI的面积为m,△DAI的面积为n,则$\frac{m}{n}$=(  )
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{7}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图:用一段长为30m的篱笆围成一边靠墙的矩形菜园,墙长为18m,设菜园的宽AB为xm,面积为Sm2
(1)求S与x的函数关系式;并直接写出自变量x的取值范围;
(2)这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

查看答案和解析>>

科目: 来源: 题型:填空题

9.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,获利y元,当获利最大时,售价x=65元.

查看答案和解析>>

科目: 来源: 题型:填空题

8.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=75t-1.5t2,那么飞机着陆后滑行25秒能停下来.

查看答案和解析>>

科目: 来源: 题型:填空题

7.若(x-3)2+|y-4|=0,则代数式yx的值是64.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在矩形ABCD中,边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(如图1).
(1)如图2,设折痕与边BC交于点O,连接,OP、OA.已知△OCP与△PDA的面积比为1:4,求边AB的长;
(2)动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN、CA,交于点F,过点M作ME⊥BP于点E.
①在图1中画出图形;
②在△OCP与△PDA的面积比为1:4不变的情况下,试问动点M、N在移动的过程中,线段EF的长度是否发生变化?请你说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

5.
【问题情境】
将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.
【探究展示】
小宇同学展示出如下正确的解法
解:OM=ON,
证明如下:
连接CO,则CO是AB边上的中线
∵CA=CB,
∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,
∴OM=ON(依据2)
【反思交流】
(1)上述证明过程中的“依据1”和“依据2”分别是指
依据1:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合)
依据2:角平分线上的点到角的两边距离相等
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
【拓展延伸】
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM,ON,试判断线段OM,ON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>

科目: 来源: 题型:选择题

4.如图,正方形ABCD中,以AD为底边作等腰△ADE,将△ADE沿DE折叠,点A落到点F处,连接EF刚好经过点C,再连接AF,分别交DE于G,交CD于H.在下列结论中:
①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S△ADH
其中正确的结论有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图1,等腰直角△ABC和等腰直角△BEF,∠ABC=∠BEF=90°,点F在边BC上,点M为AF的中点,连EM.
(1)①在图1中画出△BEF关于直线BE成轴对称的三角形;
②求证:CF=2ME;
(2)将图1中的△BEF绕点B逆时针旋转至如图2的位置,其他条件不变,(1)中的结论②是否仍成立?请证明你的结论;
(3)如图3,过B作BS⊥ME于S,若ES=2,BS=4,CF=10,则S四边形CFEB为40(直接写出结果)

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知,△ABC和△A1B1C1均为正三角形,BC和B1C1的中点均为D,如图1.
(1)当△A1B1C1绕点D旋转到△A2B2C2时,试判断AA2与CC2的位置关系,并证明你的结论.
(2)如果当△A1B1C1绕点D旋转一周,顶点A1和AC仅有一个交点,设该交点为A3,如图3.当AB=4时,求多边形ABDC3C的面积.

查看答案和解析>>

同步练习册答案