相关习题
 0  285019  285027  285033  285037  285043  285045  285049  285055  285057  285063  285069  285073  285075  285079  285085  285087  285093  285097  285099  285103  285105  285109  285111  285113  285114  285115  285117  285118  285119  285121  285123  285127  285129  285133  285135  285139  285145  285147  285153  285157  285159  285163  285169  285175  285177  285183  285187  285189  285195  285199  285205  285213  366461 

科目: 来源: 题型:解答题

10.计算:($\sqrt{32}$+3$\sqrt{6}$)÷2$\sqrt{2}$-3$\sqrt{(-\frac{2}{3})^{2}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

9.如图,已知点P是正方形ABCD的对角线BD上的一点,且BP=BC,则∠PCD的度数是22.5°.

查看答案和解析>>

科目: 来源: 题型:填空题

8.如图,三个正方形恰好围成一个直角三角形,它们的面积如图所示,则正方形A的面积为36.

查看答案和解析>>

科目: 来源: 题型:解答题

7.(1)计算:2$\sqrt{\frac{1}{3}}$×$\sqrt{9}$-$\sqrt{12}$+$\root{3}{\frac{7}{8}-1}$.
(2)解不等式组$\left\{\begin{array}{l}{x+3>0}\\{2(x-1)+3≥3x}\end{array}\right.$,并判断x=$\sqrt{3}$是否为该不等式组的解.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,Rt△ABO中,∠AOB=90°,对图形进行下列变换:
①将△ABO沿AO对折,得到△ABD;
②将△ABD绕点O旋转180°,得到△BCD.
(1)画出图形并判断四边形ABCD是什么四边形;
(2)若AO=2$\sqrt{3}$,BO=2,过O作任意一直线交AB于E、交CD于F,则SBOE+S△COF=2$\sqrt{3}$(填写最后结果即可,不必写出解答过程).

查看答案和解析>>

科目: 来源: 题型:选择题

5.[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-$\sqrt{2}$]的一次函数是正比例函数,则关于x的方程x+$\frac{1}{m}$=$\sqrt{2}$的解为(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状围成一个正方形.
(1)图②中的阴影部分面积为(m+n)2-4mn或(m-n)2
(2)观察图②,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是(m+n)2-4mn=(m-n)2
(3)实际上有许多代数恒等式可以用图形的面积来表示,如图③,它表示了(2m+n)(m+n)=2m2+3mn+n2
(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.(在图中标出相应的长度)

查看答案和解析>>

科目: 来源: 题型:解答题

3.计算:
(1)(a+b)(a-b)-(-$\frac{1}{2}$)-2+(π-3.14)0
(2)(2x+3y)2-(2x+y)(2x-y)

查看答案和解析>>

科目: 来源: 题型:解答题

2.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.
(1)若先从盒子里拿走m个黄球,这时从盒子里随机摸出一个球是黄球的事件为“随机事件”,则m的最大值为5;
(2)若在盒子中再加入2个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,问 n的值大约是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

1.解方程
(1)2x2-2x=x+1
(2)$\frac{3}{{{x^2}-9}}=1+\frac{x}{3-x}$.

查看答案和解析>>

同步练习册答案