20.
有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.
小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.
下面是小南的探究过程:
(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整;
已知:如图,在筝形ABCD中,AB=AD,CB=CD.
求证:∠B=∠D.
证明:连接AC,
在△ABC和△ADC中,
$\left\{\begin{array}{l}\;AB=AD\\ \;BC=DC\\ AC=AC\end{array}\right.$,
∴△ABC≌△ADC(SSS),
∴∠B=∠D
由以上证明可得,筝形的角的性质是:筝形有一组对角相等.
(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):筝形的两条对角线互相垂直.
(3)筝形的定义是判定一个四边形为筝形的方法之一.从边、角、对角线或性质的逆命题等角度可以进一步探究筝形的判定方法,请你写出筝形的一个判定方法(定义除外),并说明你的结论.