相关习题
 0  286683  286691  286697  286701  286707  286709  286713  286719  286721  286727  286733  286737  286739  286743  286749  286751  286757  286761  286763  286767  286769  286773  286775  286777  286778  286779  286781  286782  286783  286785  286787  286791  286793  286797  286799  286803  286809  286811  286817  286821  286823  286827  286833  286839  286841  286847  286851  286853  286859  286863  286869  286877  366461 

科目: 来源: 题型:解答题

17.已知,在直角坐标系中,二次函数y=x2-2x-3与x轴交与A、B两点(点A在点B左侧),与y轴交于点C,顶点为D.
(1)A(-1,0)B(3,0)C(0,-3);
(2)点P为y轴左侧抛物线上的一动点,PE⊥x轴,交BC的延长线于点E,当△BEP为直角三角时,求点P的坐标;
(3)若P为线段OC上一动点,连接BP,将BP绕点B顺时针旋转45°得BQ,连接OQ,在运动过程中,求OQ的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

16.若a,b表示有理数,且a=-b,那么在数轴上表示a与数b的点到原点的距离(  )
A.表示数a的点到原点的距离较远B.表示数b的点到原点的距离较远
C.相等D.无法比较

查看答案和解析>>

科目: 来源: 题型:填空题

15.平行四边形ABCD中,BC=4,∠B=60°,AE为BC边上的高,将△ABE沿AE所在直线翻折后得△AFE,若△AFE与四边形AECD重叠部分的面积是$\frac{17\sqrt{3}}{4}$,则AB=8+3$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.x是怎样的实数时,下列二次根式有意义?
(1)$\sqrt{4-3x}$;
(2)$\sqrt{-5x}$
(3)$\sqrt{\frac{1}{x}}$
(4)$\frac{\sqrt{2x+1}}{x-1}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.计算:
(1)$\sqrt{(-42)×(-12)}$;
(2)$\sqrt{1{0}^{2}-2.8^{2}}$;
(3)(-$\frac{\sqrt{3}}{3}$)×(-2$\sqrt{21}$)

查看答案和解析>>

科目: 来源: 题型:解答题

12.甲、乙二人计算a+$\sqrt{1-2a+{a}^{2}}$的值,当a=3的时候,得到下面不同的答案:
甲的解答:a+$\sqrt{1-2a+{a}^{2}}$=a+$\sqrt{(1-a)^{2}}$=a+1-a=l;
乙的解答:a+$\sqrt{1-2a+{a}^{2}}$=a+$\sqrt{(a-1)^{2}}$=a+a-1=2a-1=5.
哪一个解答是正确的?错误的解答错在哪里?为什么?

查看答案和解析>>

科目: 来源: 题型:解答题

11.阅读理解
(一)阅读与思考
通过解方程(组)使问题得到解决的思维方式就是方程思想,刚学过的《勾股定理》及《一次函数》都与它有密切的联系.暑假后,方程家族也将迎来《一元二次方程》这一新成员,它的求解方法之一“配方法”,相信你一学就会,例如:解一元二次方程x2+2x-1=0
解:x2+2x-1=0⇒x2+2x+1=2⇒(x+1)2=2⇒x+1=$\sqrt{2}$或x+1=-$\sqrt{2}$
∴x=-1+$\sqrt{2}$或x=-1-$\sqrt{2}$
(二)解决问题
 如图1,矩形ABCD中,AB=9,AD=12,点G在CD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.
(1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;
(2)在点P从B向C运动的过程中,是否存在使AP⊥GP的时刻?若存在,求出x的值,若不存在,请说明理由;
(3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状平行四边形,并直接写出它的面积15.

查看答案和解析>>

科目: 来源: 题型:解答题

10.我们把能够平分一个图形面积的直线叫“好线”,如图1,过圆心的直线是这个圆的一条“好线”.

(1)请在图2中画出?ABCD的一条“好线”;
(2)如图3,M是正方形ABCD内一定点,请在图3中作出两条“好线”(要求其中一条“好线”必须过点M),使它们将正方形ABCD的面积四等分.
(3)如图4,矩形ABCD是某博物馆的平面图,E是它的入口处、F是它的出口处,G是它的售票处,且BE=DF.
①连结AE,CF,求证:四边形AECF是平行四边形;
②求证:直线EF是矩形ABCD的“好线”;
③在对角线BD上有一问讯处P,折线F-P-G也恰好将矩形ABCD的面积二等分,请确定问讯处P的位置(画出图形即可,保留作图痕迹).

查看答案和解析>>

科目: 来源: 题型:解答题

9.计算:$\sqrt{12}$-$\frac{3}{\sqrt{3}}$-$\sqrt{(1-\sqrt{3})^{2}}$.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知点(-$\sqrt{3}$,y1),(2,y2)都在直线y=-$\sqrt{3}$x+$\frac{\sqrt{3}}{3}$上,则y1与y2大小关系是(  )
A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2

查看答案和解析>>

同步练习册答案