相关习题
 0  286893  286901  286907  286911  286917  286919  286923  286929  286931  286937  286943  286947  286949  286953  286959  286961  286967  286971  286973  286977  286979  286983  286985  286987  286988  286989  286991  286992  286993  286995  286997  287001  287003  287007  287009  287013  287019  287021  287027  287031  287033  287037  287043  287049  287051  287057  287061  287063  287069  287073  287079  287087  366461 

科目: 来源: 题型:解答题

5.尝试画出说明边边角(两边和其中一边所对的角对应相等)不能证明全等的图例.
(1)如果这个角是直角可以吗?
(2)如果这个角是钝角可以吗?
(3)是否这个角是锐角就一定不可以?

查看答案和解析>>

科目: 来源: 题型:解答题

4.计算:
(1)2$\sqrt{3}$-($\sqrt{2}-\sqrt{3}$)
(2)求式中x的值:x3-3=$\frac{3}{8}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.在每个小正方形的边长为1的网格中,点A,B在格点上.
(Ⅰ)如图①,点C,D在格点上,线段CD与AB交于点P,则AP的值等于$\frac{2}{3}$$\sqrt{17}$;
(Ⅱ)请在如图②所示的网格中,用无刻度的直尺,在线段AB上画出一点P,使AP=$\frac{9}{25}$$\sqrt{17}$,并简要说明点P的位置是如何找到的(不要求证明)取格点C、D,连接CD,CD与AB交于点G,取格点F,两平行线的交点为E,连接EF,EF与AB交于点P,则点P即为所求.

查看答案和解析>>

科目: 来源: 题型:解答题

2.解方程:x=(x2+3x-2)2+3(x2+3x-2)-2.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知(x-y)2=9,x+y=5,求xy的值.

查看答案和解析>>

科目: 来源: 题型:填空题

20.△ABO的顶点坐标分别是A(-3,3),B(3,3),O(0,0),试将△ABO放大,使放大后的△EFO与△ABO对应边的比为2:1,则点E和点F的坐标分别为E(-6,6)、F(6,6)或E(-6,6)、F(6,-6).

查看答案和解析>>

科目: 来源: 题型:选择题

19.如图所示,已知抛物线C1、C2关于x轴对称,抛物线C1,C3关于y轴对称,如果抛物线C2的解析式是y=-$\frac{3}{4}$(x-2)2+2,那么抛物线C3的解析式是(  )
A.y=-$\frac{3}{4}$(x-2)2-2B.y=-$\frac{3}{4}$(x+2)2+2C.y=$\frac{3}{4}$(x-2)2-2D.y=$\frac{3}{4}$(x+2)2-2

查看答案和解析>>

科目: 来源: 题型:解答题

18.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)
(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.
  甲仓库 乙仓库
 A工地 x70-x 
 B工地100-x  x+10
(2)用含x的代数式表示运送甲仓库100吨水泥的运费为-10x+15000元.(写出化简后的结果)
(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)

查看答案和解析>>

科目: 来源: 题型:解答题

17.数学问题:计算$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+…+$\frac{1}{{m}^{n}}$(其中m,n都是正整数,且m≥2,n≥1)
探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 
探究一:计算探究一:计算$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$.
第1次分割,把正方形的面积二等分,其中阴影部分的面积为$\frac{1}{2}$ 
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为 $\frac{1}{2}$+$\frac{1}{{2}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续二等分,…; 

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$最后空白部分的面积是 $\frac{1}{{2}^{n}}$.
探究二:计算$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为$\frac{2}{3}$;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为$\frac{2}{3}$+$\frac{2}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+…+$\frac{2}{{3}^{n}}$,最后空白部分的面积是$\frac{1}{{3}^{n}}$.
根据第n次分割图可得等式:$\frac{2}{3}$+$\frac{2}{{3}^{2}}$+$\frac{2}{{3}^{3}}$+…+$\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$,
两边同除以2,得$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$=$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$.

探究三:计算$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$.
第1次分割,把正方形的面积四等分,其中阴影部分的面积为$\frac{3}{4}$;
第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为$\frac{3}{4}$+$\frac{3}{{4}^{2}}$;
第3次分割,把上次分割图中空白部分的面积继续四等分,…;

第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为$\frac{3}{4}$+$\frac{3}{{4}^{2}}$+$\frac{3}{{4}^{3}}$+…+$\frac{3}{{4}^{n}}$,最后空白部分的面积是$\frac{1}{{4}^{n}}$
根据第n次分割图可得等式:$\frac{3}{4}$+$\frac{3}{{4}^{2}}$+$\frac{3}{{4}^{3}}$+…+$\frac{3}{{4}^{n}}$=1-$\frac{1}{{4}^{n}}$.
两边同除以3,得$\frac{1}{4}$+$\frac{1}{{4}^{2}}$+$\frac{1}{{4}^{3}}$+…+$\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3×{4}^{n}}$

探究四:计算$\frac{1}{5}$+$\frac{1}{{5}^{2}}$+$\frac{1}{{5}^{3}}$+…+$\frac{1}{{5}^{n}}$
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+…+$\frac{1}{{m}^{n}}$.
(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)
根据第n次分割图可得等式:$\frac{m-1}{m}$+$\frac{m-1}{{m}^{2}}$+$\frac{m-1}{{m}^{3}}$+…+$\frac{m-1}{{m}^{n}}$=1-$\frac{1}{{m}^{n}}$,
所以,$\frac{1}{m}$+$\frac{1}{{m}^{2}}$+$\frac{1}{{m}^{3}}$+…+$\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{(m-1){m}^{n}}$.
拓广应用:计算$\frac{6-1}{6}$+$\frac{{6}^{2}-1}{{6}^{2}}$+$\frac{{6}^{3}-1}{{6}^{3}}$+…$\frac{{6}^{n}-1}{{6}^{n}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.用图形面积可以表示一些等式.如图1可以表示(a+b)2=a2+2ab+b2,则图2表示的等式是(2a+b)(a+b)=2a2+3ab+b2

查看答案和解析>>

同步练习册答案