3.阅读下列材料,然后回答问题:
在进行二次根式运算时,我们有时会碰上如$\frac{2}{\sqrt{3}}$、$\frac{2}{\sqrt{3}+1}$这样的式子,其实我们还可以将其进一步化简:$\frac{2}{\sqrt{3}}$=$\frac{2×\sqrt{3}}{\sqrt{3}×\sqrt{3}}$=$\frac{2}{3}$$\sqrt{3}$;$\frac{2}{\sqrt{3}+1}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-1}$=$\sqrt{3}$-1.
以上这种化简过程叫做分母有理化.
$\frac{2}{\sqrt{3}+1}$还可以用以下方法化简:
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3}+1}$=$\sqrt{3}$-1.
请任用其中一种方法化简:
①$\frac{2}{\sqrt{15}-3}$;
②$\frac{5}{2\sqrt{3}+\sqrt{7}}$.