9.(1)已知n=$\frac{n(n+1)}{1•2}$-$\frac{(n-1)n}{1•2}$
那么1+2+3+…+n=$\frac{1•2}{1•2}$-$\frac{0•1}{1•2}$+$\frac{2•3}{1•2}$-$\frac{1•2}{1•2}$+$\frac{3•4}{1•2}$-$\frac{2•3}{1•2}$+…+$\frac{n(n+1)}{1•2}$-$\frac{(n-1)n}{1•2}$,
即1+2+3+…+n=$\frac{n(n+1)}{1•2}$-$\frac{0•1}{1•2}$=$\frac{n(n+1)}{1•2}$.
模仿上述求和过程,设n
2=$\frac{n(n+1)(an+b)}{1•2•3}$-$\frac{(n-1)n[a(n-1)+b]}{1•2•3}$,确定a与b的值,并计算1
2+2
2+3
2+…+n
2的结果.
(2)图1中,抛物线y=x
2,直线x=1与x轴围成底边长为1的曲边三角形,其面积为S,现利用若干矩形面积和来逼近该值.
①将底边3等分,构建3个矩形(见图2),求其面积为S
3;
②将底边n等分,构建n个矩形(如图3),求其面积和S
n并化简;
③考虑当n充分大时S
n的逼近状况,并给出S的准确值.
(3)计算图4中抛物线y=2x
2与直线y=2x+4所围成的阴影部分面积.