1.已知矩形ABCD中,对角线AC、BD交于点O,AB=4cm,AD=4$\sqrt{3}$cm.已知点E、F分别同时从A点出发,点E沿着A→D→O运动,点F沿着A→B→O运动,当它们到达O点时同时停止运动.点E在AD上的速度为$\sqrt{3}$cm/s,点F在AB上的速度为1cm/s,E、F两点在BD上的速度都为2cm/s.在整个运动过程中,连接EF,在直线EF下方作等边△EFG,设运动时间为t秒.
(1)当点E在AD上运动时,求t为何值时,点G落在边BC上?
(2)如图1,在整个运动过程中,△EFG与△ABC重叠部分的面积S,请直接写出S与t的函数关系式,并写出自变量t的取值范围;
(3)如图2,当t=2时,将△BFG绕着点G顺时针旋转α(0°<α<360°),在旋转过程中,直线BF与直线AC、AD分别交于点M、N.问是否存在这样的点M、N使得△AMN是以MN为腰的等腰三角形?若存在,请求出AM的长度;若不存在,请说明理由.