相关习题
 0  290341  290349  290355  290359  290365  290367  290371  290377  290379  290385  290391  290395  290397  290401  290407  290409  290415  290419  290421  290425  290427  290431  290433  290435  290436  290437  290439  290440  290441  290443  290445  290449  290451  290455  290457  290461  290467  290469  290475  290479  290481  290485  290491  290497  290499  290505  290509  290511  290517  290521  290527  290535  366461 

科目: 来源: 题型:填空题

12.若(x-3)和(x+5)是x2+px+q的因式,则p为=2.

查看答案和解析>>

科目: 来源: 题型:解答题

11.甲、乙两地相距100千米,摩托车的速度是45千米/时,货车的速度是35千米/时.
(1)若两车分别从两地同时开出,相向而行,经过多少小时两车相遇?(设未知数列出方程即可,以下同)
(2)若两车分别从两地同时出发,同向而行,经过几小时后摩托车追上货车?(货车在前摩托车在后)
(3)若两车都从甲地到乙地,要使两车同时到达,贷车应先出发几小时?

查看答案和解析>>

科目: 来源: 题型:填空题

10.若|x|=|-3|,则x=±3;若|a+3|+|b-1|=0,则a=-3,b=1.

查看答案和解析>>

科目: 来源: 题型:填空题

9.下列各数:①3.141 ②0.$\stackrel{•}{7}$③$\sqrt{5}-\sqrt{7}$④π ⑤±$\sqrt{2.25}$⑥-$\frac{2}{3}$⑦0 ⑧0.3030030003…(相邻两个3之间0的个数逐次增加1),其中有理数是①②⑤⑥⑦;无理数是≡.(填序号)

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,已知AB∥CD,AB=CD,O为AC中点,过点O的直线交DA延长线和 BC延长线于E、F,求证:OE=OF.

查看答案和解析>>

科目: 来源: 题型:选择题

7.下列各图中,一定全等的是(  )
A.顶角相等的两个等腰三角形
B.两个等边三角形
C.各有一个角是45°,腰长都是3cm的两个等腰三角形
D.底边和顶角都相等的两个等腰三角形

查看答案和解析>>

科目: 来源: 题型:解答题

6.计算
(1)(-23)+|-63|+|-37|+(-77)
(2)(+18)+(-32)+(-16)+(+26)
(3)19+(-195)+47       
(4)(-0.8)+(-1.2)+(-0.6)+(-2.4)
(5)(-8)+(-3$\frac{1}{2}$)+2+(-$\frac{1}{2}$)+12 
(6)5$\frac{3}{5}$+(-5$\frac{2}{3}$)+4$\frac{2}{5}$+(-$\frac{1}{3}$)
(7)(-6.37)+(-3$\frac{3}{4}$)+6.37+2.75.

查看答案和解析>>

科目: 来源: 题型:解答题

5.(1)数学实验室:
若点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离表示为AB,即AB=|a-b|.
利用数轴回答下列问题:
①数轴上表示2和5两点之间的距离是3,
②数轴上表示x和-2的两点之间的距离表示为|x+2|.
③若x表示一个有理数,且-3<x<1,则|x-1|+|x+3|=4.
④若x表示一个有理数,且|x-1|+|x+3|>4,则有理数x的取值范围x<-3或x>1.
(2)三个数a、b、c的积为负数,和为正数,且x=$\frac{a}{|a|}$+$\frac{b}{|b|}$+$\frac{c}{|c|}$+$\frac{{|{ab}|}}{ab}$+$\frac{{|{ac}|}}{ac}$+$\frac{{|{bc}|}}{bc}$,则ax3+bx2+cx-5的值是-5.
(3)定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为$\frac{n}{{2}^{k}}$(其中k是使$\frac{n}{{2}^{k}}$为奇数的正整数),并且运算重复进行.例如,取n=26,则:

若n=449,则第2016次“F运算”的结果是1.

查看答案和解析>>

科目: 来源: 题型:解答题

4.阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0  ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.
(2)解方程(x2+x)2-8(x2+x)+12=0.

查看答案和解析>>

科目: 来源: 题型:填空题

3.一元二次方程x2+3x-1=0与x2-2x+3=0的所有实数根的和等于-3.

查看答案和解析>>

同步练习册答案