相关习题
 0  293443  293451  293457  293461  293467  293469  293473  293479  293481  293487  293493  293497  293499  293503  293509  293511  293517  293521  293523  293527  293529  293533  293535  293537  293538  293539  293541  293542  293543  293545  293547  293551  293553  293557  293559  293563  293569  293571  293577  293581  293583  293587  293593  293599  293601  293607  293611  293613  293619  293623  293629  293637  366461 

科目: 来源: 题型:解答题

5.如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点,例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点,同样,点D也是A,B两点的勾股点.如图,矩形ABCD中,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法).

查看答案和解析>>

科目: 来源: 题型:解答题

4.某商场第一年初投入50万元进行商品经营,以后每年年终将当年获得的年利润与当年年初投入资金相加所得的总资金,作为下一年年初投入资金继续进行经营.
(1)如果第一年的年利率为p,则第一年年终的总金可用代数式表示为50(1+p)万元.
(2)如果第二年的年获利率比第一年的年获利率多10个百分点,第二年年终的总资金为66万元,求第一年的年利率.

查看答案和解析>>

科目: 来源: 题型:解答题

3.2015年9月22日,世界首座双层自锚式悬索景观桥--扬州万福大桥建成通车.通车后,宁波港到扬州的路程比原来缩短了120千米.已知运输车速度不变,行驶时间将从原来的3小时20分缩短到2小时.
(1)求扬州经万福大桥到宁波港的路程;
(2)若货物运输费用包括运输成本和时间成本,已知某车货物从扬州到宁波港的运输成本  是每千米1.8元,时间成本是每时28元,那么该车货物从扬州经万福大桥到宁波港的运输费用是多少?
(3)现扬州准备开辟宁波方向的外运路线,即货物从扬州经万福大桥到宁波港,再从宁波港运到A地.若有一批货(不超过10车)从扬州按外运路线运到A地的运费需要8320元,其中从扬州经万福大桥到宁波的费用按上所述,从宁波港到A地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车上的海上运费就减少20元,问这批货有几车?

查看答案和解析>>

科目: 来源: 题型:填空题

2.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=$\frac{1}{3}$CE时,EP+BP=8.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知:如图,在△ABC中,AC=AB=10,BC=16,动点P从A点出发,沿线段AC运动,速度为1个单位/s,时间为t秒,P点关于BC的对称点为Q.
(1)当t=2时,则CN的长为$\frac{32}{5}$;
(2)连AQ交线段BC于M,若AM=2MQ,求t的值;
(3)若∠BAQ=3∠CAQ时,求t的值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,二次函数y=ax2+bx+c的图象经过点A(1,4)与B(5,0),C(-1,0).
(1)求该二次函数的解析式;
(2)点D是该二次函数图象上A,B两点之间的一动点,横坐标为x(1<x<5),写出四边形ABCD的面积S关于点D的横坐标x的函数表达式,并求S的最大值;
(3)点E是该二次函数图象上的点,点E是x轴上的点,如果以A、C、E、F为顶点的四边形是以AC为一边的平行四边形,直接写出E的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图1,AB是⊙O的直径,直线EF与⊙O相切于点C,连接AC,过点A作AD⊥EF于点D
(1)求证:∠CAD=∠BAC
(2)如图2,将(1)中的条件“直线EF与⊙O相切于点C,连接AC”改成“直线EF与⊙O相交于点G,H,连接AG、AH”,其余条件不变,求证:∠GAD=∠BAH
(3)在图2中,若AH平分∠BAG,AB=2$\sqrt{5}$,cos∠BAH=$\frac{2\sqrt{5}}{5}$,直接写出线段DG的长.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知m=$\frac{1{5}^{4}}{{3}^{44}}$,n=$\frac{{5}^{4}}{{3}^{40}}$,那么2017m-n=1.

查看答案和解析>>

科目: 来源: 题型:解答题

1.(1)先化简,再求值:$\frac{x}{{x}^{2}-2x+1}$÷($\frac{x+1}{{x}^{2}-1}$+1),其中x=$\sqrt{2}$+1;
(2)已知:x=$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$,y=$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$,求$\frac{{x}^{3}-x{y}^{2}}{{x}^{4}y+2{x}^{3}{y}^{2}+{x}^{2}{y}^{3}}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图1,已知?ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,交DE于H.
(1)求证:AB=BH;
(2)如图2,连AH,CH,判断以AH、BD、CH为边构成的三角形形状,并说明理由;
(3)若BE=5,且以AH、BD、CH为边构成的三角形的面积为10,试求此时平行四边形的面积.

查看答案和解析>>

同步练习册答案