5.观察下列各式:$\frac{1}{2}$=$\frac{1}{1×2}$=$\frac{1}{1}$-$\frac{1}{2}$,$\frac{1}{6}$=$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{12}$=$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,$\frac{1}{20}$=$\frac{1}{4×5}$=$\frac{1}{4}$-$\frac{1}{5}$,$\frac{1}{30}$=$\frac{1}{5×6}$=$\frac{1}{5}$-$\frac{1}{6}$,…
(1)请你根据上面各式的规律,写出符合该规律的一道等式:$\frac{1}{42}$=$\frac{1}{6×7}$=$\frac{1}{6}$-$\frac{1}{7}$
(2)请利用上述规律计算:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$=$\frac{n}{n+1}$
(用含有n的式子表示)
(3)请利用上述规律解方程:$\frac{1}{(x-2)(x-1)}$+$\frac{1}{(x-1)x}$+$\frac{1}{x(x+1)}$=$\frac{1}{x+1}$.