相关习题
 0  293939  293947  293953  293957  293963  293965  293969  293975  293977  293983  293989  293993  293995  293999  294005  294007  294013  294017  294019  294023  294025  294029  294031  294033  294034  294035  294037  294038  294039  294041  294043  294047  294049  294053  294055  294059  294065  294067  294073  294077  294079  294083  294089  294095  294097  294103  294107  294109  294115  294119  294125  294133  366461 

科目: 来源: 题型:填空题

16.九根火柴排成的形状如图,图中有3个平行四边形,你判断的根据是两组对边分别相等的四边形是平行四边形.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,线段OD=OC.

(1)求抛物线的解析式;
(2)抛物线上是否存在点M,使得△CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由.
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图1,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连接AC,AD,点P为直径AB上一点(不与点A,B重合),过点P的直线与弦AC相交于点F,与⊙O相交于点M,点N,且PF=AF.
(1)求证:MN∥AD;
(2)如图2,连接DN,若MF=DN,求证:$\widehat{CM}=\widehat{CD}$;
(3)如图3,在(2)的条件下.过点C作MN的垂线,分别与AB,AD,⊙O相交于点K,点H,点G,连接BC,若BC=5,CG=11,求弦DN的长.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图在一个边长为a的小正方形中,剪去一个边长为b的小正方形,再将余下的部分拼成一个长方形.
(1)两个图形(着色部分)的面积之间有什么关系?
(2)请结合图形,对平方差公式(a+b)(a-b)=a2-b2进行解释.

算式与平方差公式a对应的项与平方差公式中b对应的项写成a2-b2的形式计算结果
(x+y)(x-y)yx2-y2x2-y2
(m+3)(m-3)m3m2-32m2-9
(2x+1)(2x-1)2x1(2m)2-124m2-1
(x+2y)(-x+2y)x2yx2-(2y)2x2-4y2 

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知抛物线y=ax2-4ax+3与x轴交于A(1,0),B,与y轴交于点C.
(1)求抛物线的解析式;
(2)在x轴下方的抛物线上有一点P,满足tan∠BCP=$\frac{1}{5}$,求点P的坐标;
(3)在抛物线的对称轴上有点Q,存在以点Q为圆心,同时与直线BC和x轴都相切的圆,直接写出点Q的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在平面直角坐标系内,点O为坐标原点,直线y=$\frac{1}{2}$x+1与抛物线y=$\frac{1}{2}$x2+bx+c交于A,B两点,点A在x轴上,点B的横坐标为4.
(1)求抛物线的解析式;
(2)抛物线y=$\frac{1}{2}$x2+bx+c 交x轴正半轴于点C,横坐标为t的点P在第四象限的抛物线上,过点P作AB的垂线交x轴于点E,点Q为垂足,设CE的长为d,求d与t之间的函数关系式,直接写出自变量t的取值范围:
(3)在(2)的条件下,过点B作y轴的平行线交x轴于点D,连接DQ.当∠AQD=3∠PQD时,求点P坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

10.若代数式$\frac{2x-3}{4}$与$\frac{x-4}{3}$的差不小于1,试求x的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,已知抛物线y=-$\frac{1}{4}$x2+bx+c与y轴交于点C(0,2),与x轴交于A,B两点,点A的坐标为(-2,0).
(1)求抛物线的解析式及点B的坐标;
(2)若点D为该抛物线上的一个动点,且在直线BC上方,当以B,C,D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;
(3)抛物线的对称轴为直线l,点C关于l的对称点为E,能否在抛物线和l上分别找到点P,Q,使得以C,E,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

8.如图,在△ABC中,AB=AC,将AB边绕点A按逆时针方向旋转90°,得到线段AD,AD交BC边于点E,过点D作AD的垂线,交AC边的延长线于点F,若AE=9,DF=8,则线段DE的长为6.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图1,直线l交x轴于点D,与反比例函数y=$\frac{k}{x}$(k>0)的图象交于两点A、E、AG⊥x轴,垂足为点G,S△AOG=3
(1)k=6;
(2)求证:AD=CE;
(3)如图2,若当E为平行四边形OABC的对角线AC的中点,求平行四边形OABC的面积.

查看答案和解析>>

同步练习册答案