相关习题
 0  294440  294448  294454  294458  294464  294466  294470  294476  294478  294484  294490  294494  294496  294500  294506  294508  294514  294518  294520  294524  294526  294530  294532  294534  294535  294536  294538  294539  294540  294542  294544  294548  294550  294554  294556  294560  294566  294568  294574  294578  294580  294584  294590  294596  294598  294604  294608  294610  294616  294620  294626  294634  366461 

科目: 来源: 题型:选择题

15.如图,在平面直角坐标系中,点A(4$\sqrt{3}$,0)是x轴上一点,以OA为对角线作菱形OBAC,使得∠BOC=60°,现将抛物线y=x2沿直线OC平移到y=a(x-m)2+h,则当抛物线与菱形的AB边有公共点时,则m的取值范围是(  )
A.$\sqrt{3}$≤m≤3$\sqrt{3}$B.3$\sqrt{3}$≤m≤$\frac{10}{3}$$\sqrt{3}$C.$\frac{10}{3}$$\sqrt{3}$≤m≤$\frac{16}{3}$$\sqrt{3}$D.$\sqrt{3}$≤m≤$\frac{16}{3}$$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.(1)如图1,在四边形ADBC中,∠ACB=∠ADB=90°,将△BCD绕点D逆时针旋转90°,则点B恰好落在点A处,得到旋转后的△AED,则AC、BC、CD满足的数量关系式是AC+BC=$\sqrt{2}$CD.
(2)如图2,AB是⊙O的直径,点C、D在⊙O上,且$\widehat{AD}$=$\widehat{BD}$,若AB=13,BC=12,求CD的长.
(3)如图3,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示).

查看答案和解析>>

科目: 来源: 题型:解答题

13.在平面直角坐标系中已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

12.(1)探索:先观察并计算下列各式,在空白处填上“>”、“<”或“=”,并完成后面的问题.
$\sqrt{4}$×$\sqrt{16}$=$\sqrt{4×16}$,$\sqrt{49}$×$\sqrt{9}$=$\sqrt{49×9}$,$\sqrt{\frac{9}{25}}$×$\sqrt{25}$=$\sqrt{\frac{9}{25}×25}$,$\sqrt{\frac{16}{9}}$×$\sqrt{\frac{4}{25}}$=$\sqrt{\frac{16}{9}×\frac{4}{25}}$…
用$\sqrt{a}$,$\sqrt{b}$,$\sqrt{ab}$表示上述规律为:$\sqrt{a}$•$\sqrt{b}$=$\sqrt{ab}$(a≥0,b≥0);
(2)利用(1)中的结论,求$\sqrt{8}$×$\sqrt{\frac{1}{2}}$的值
(3)设x=$\sqrt{3}$,y=$\sqrt{6}$试用含x,y的式子表示$\sqrt{54}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知关于x,y的方程组$\left\{\begin{array}{l}{x+y=5}\\{4ax+5by=-22}\end{array}\right.$与$\left\{\begin{array}{l}{2x-y=1}\\{ax-by-8=0}\end{array}\right.$有相同的解,求a,b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,直角坐标系中,△ABC的顶点都在网格点上.其中,A点坐标为(2,-1),将△ABC向右平移3个单位,再向下平移2个单位得到△A1B1C1
(1)画出平移后的图形;
(2)写出A1、B1、C1的坐标;、
(3)求△A1B1C1的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.若$\root{3}{3y-1}$与$\root{3}{1-2x}$互为相反数,且x≠0,y≠0,求$\frac{x}{y}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.解方程:
(1)$\left\{\begin{array}{l}{x+2y=1①}\\{3x-2y=11②}\end{array}\right.$                
(2)$\left\{\begin{array}{l}{3(x+y)-2(2x-y)=3}\\{\frac{2(x-y)}{3}-\frac{x+y}{4}=-\frac{1}{12}}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.计算:
(1)$\sqrt{(-5)^{2}}$-|2-$\sqrt{2}$|-$\root{3}{-27}$ 
(2)$\root{3}{\frac{27}{8}}$-$\root{3}{1-\frac{189}{64}}$-$\sqrt{1-\frac{31}{256}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级.现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出图所示的统计图,已知图中从左到右的四个长方形的高的比为:14:9:6:1,评价结果为D等级的有2人,请你回答以下问题:
①共抽测了60人;②样本中B等级的频率是0.3;
③如果要绘制扇形统计图,D等级在扇形统计图中所占的圆心角是12 度;
④该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中.

查看答案和解析>>

同步练习册答案