相关习题
 0  294614  294622  294628  294632  294638  294640  294644  294650  294652  294658  294664  294668  294670  294674  294680  294682  294688  294692  294694  294698  294700  294704  294706  294708  294709  294710  294712  294713  294714  294716  294718  294722  294724  294728  294730  294734  294740  294742  294748  294752  294754  294758  294764  294770  294772  294778  294782  294784  294790  294794  294800  294808  366461 

科目: 来源: 题型:解答题

3.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF
(1)求证:△EBF≌△DFC;
(2)求证:四边形AEFD是平行四边形;
(3)①△ABC满足AB=AC时,四边形AEFD是菱形.(无需证明)
②△ABC满足∠BAC=150°时,四边形AEFD是矩形.(无需证明)
③△ABC满足AB=AC,∠BAC=150°时,四边形AEFD是正方形.(无需证明)

查看答案和解析>>

科目: 来源: 题型:解答题

2.张倩同学打算制作一个平行四边形纸板,但手中只有一块等腰三角形纸板.张倩同学想了一下,用剪刀只剪了一刀,便得到一个平行四边形,且纸板充分利用没有浪费.你知道张倩是怎样剪的吗?用虚线表示出剪刀线;并请你画出两种张倩所拼的平行四边形.

查看答案和解析>>

科目: 来源: 题型:解答题

1.计算:
(1)$\sqrt{8}$+|1-$\sqrt{2}$|-π0+${(\frac{1}{2})}^{-1}$  
(2)($\sqrt{8}$+$\sqrt{3}$)×$\sqrt{6}$-(4$\sqrt{2}$-3$\sqrt{6}$)÷2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.在平面直角坐标系中有以下几点:A(0,0),B(2,3),C(4,0),若以A、B、C为顶点,作一个平行四边形,请写出第四个顶点的位置坐标(2,-3)或(-2,3)或(6,3).

查看答案和解析>>

科目: 来源: 题型:解答题

19.化简,再求值:(a-$\frac{2ab-{b}^{2}}{a}$)÷$\frac{a-b}{a}$,其中a=2,b=-3.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在圆O中,AC是圆的弦,AB是圆的直径,AB=6,∠ABC=30°,过点C作圆的切线交BA的延长线于点P,连接BC.
(1)求证:△PAC∽△PCB;
(2)点Q在半圆ADB上运动,填空:
①当AQ=3$\sqrt{2}$时,四边形AQBC的面积最大;
②当AQ=3或3$\sqrt{3}$时,△ABC与△ABQ全等.

查看答案和解析>>

科目: 来源: 题型:选择题

17.若k≠0,b>0,则y=kx+b的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:选择题

16.如图是某个几何体的三视图,该几何体是(  )
A.圆锥B.三棱锥C.四棱锥D.四棱柱

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4),矩形ABCD的顶点A与点O重合,AD,AB分别在x轴,y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①设以P、N、C、D为顶点的多边形面积为S,试问:S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
②当t=1时,射线AB上存在点Q,使△QME为直角三角形,请直接写出点Q的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

14.问题情境:

在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.
(1)操作发现:
当点O为AC中点时:
①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系:AE2+CF2=EF2(无需证明);
②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的结论是否成立.若成立,请证明;若不成立,请说明理由;
(2)类比延伸:
当点O不是AC中点时,如图3,三角板的两直角边分别交AB,BC于E、F两点,若$\frac{AO}{AC}$=$\frac{1}{5}$,请直接写出$\frac{OE}{OF}$=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案