相关习题
 0  294647  294655  294661  294665  294671  294673  294677  294683  294685  294691  294697  294701  294703  294707  294713  294715  294721  294725  294727  294731  294733  294737  294739  294741  294742  294743  294745  294746  294747  294749  294751  294755  294757  294761  294763  294767  294773  294775  294781  294785  294787  294791  294797  294803  294805  294811  294815  294817  294823  294827  294833  294841  366461 

科目: 来源: 题型:解答题

6.阅读材料:善于思考的小军在解方程组$\left\{\begin{array}{l}{2x+5y=3①}\\{4x+11y=5②}\end{array}\right.$时,采用了一种“整体代换”的解法:
解:将方程②变形为4x+10y+y=5,即2(2x+5y)+y=5,③
把方程①代入③得2×3+y=5,∴y=-1,
把y=-1代入①得x=4,
∴方程组的解为$\left\{\begin{array}{l}x=4\\ y=-1.\end{array}$
请你解决以下问题:
(1)模仿小军的“整体代换”法解方程组$\left\{\begin{array}{l}{3x-2y=5,①}\\{9x-4y=19,②}\end{array}\right.$
(2)已知x,y满足方程组$\left\{\begin{array}{l}{{3x}^{2}-2xy+1{2y}^{2}=47①}\\{{2x}^{2}+xy+{8y}^{2}=36②}\end{array}\right.$,求整式x2+4y2+xy的值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知整数x满足不等式3x-4≤6x-2和不等式$\frac{x-1}{2}$>$\frac{2x+1}{3}$-1,并且满足方程3(x+a)+2-5a=0,求a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知点F是等边△ABC的边BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与等边△ABC在BC的同侧,且CD∥AB,连结BE.
(1)如图①,若AB=10,EF=8,请计算△BEF的面积;
(2)如图②,若点G是BE的中点,连接AG、DG、AD.试探究AG与DG的位置和数量关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知y与x成一次函数,当x=0时,y=3,当x=2时,y=7.
(1)写出y与x之间的函数关系式.  
(2)当x=4时,求y的值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.计算:2(π-3)0+|-$\sqrt{8}$|-4cos45°.

查看答案和解析>>

科目: 来源: 题型:填空题

1.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:
x-5-4-3-2-1
y-7.5-2.50.51.50.5
根据表格提供的信息,有下列结论:
①该抛物线的对称轴是直线x=-2;②该抛物线与y轴的交点坐标为(0,-2.5);③b2-4ac=0;④若点A(0.5,y1)是该抛物线上一点.则y1<-2.5.则所有正确的结论的序号是①②④.

查看答案和解析>>

科目: 来源: 题型:选择题

20.如图,△ABC中,∠ABC=90°,AB=2,BC=4,现将△ABC绕顶点B顺时针方向旋转△A′BC′的位置,此时A′C′与BC的交点D是BC的中点,则线段C′D的长度是(  )
A.$\frac{4\sqrt{5}}{5}$B.$\frac{6\sqrt{5}}{5}$C.$\frac{8\sqrt{5}}{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

19.阅读下面的文字,解答问题:
大家知道$\sqrt{2}$是无理数,而无理数是无限不循环小数,因此$\sqrt{2}$的小数部分我们不可能全部地写出来,于是小明用$\sqrt{2}$-1来表示$\sqrt{2}$的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为$\sqrt{2}$的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:
∵$\sqrt{4}$<$\sqrt{7}$<$\sqrt{9}$,即2<$\sqrt{7}$<3,
∴$\sqrt{7}$的整数部分为2,小数部分为($\sqrt{7}$-2).
请解答:(1)$\sqrt{17}$的整数部分是4,小数部分是$\sqrt{17}$-4.
(2)如果$\sqrt{5}$的小数部分为a,$\sqrt{13}$的整数部分为b,求a+b-$\sqrt{5}$的值;
(3)已知:10+$\sqrt{3}$=x+y,其中x是整数,且0<y<1,求x-y的相反数.

查看答案和解析>>

科目: 来源: 题型:解答题

18.完成下面推理过程.
如图:在四边形ABCD中,∠A=106°-α,∠ABC=74°+α,BD⊥DC于点D,EF⊥DC于点F,求证:∠1=∠2
证明:∵∠A=106°-α,∠ABC=74°+α(已知)
∴∠A+∠ABC=180°
∴AD∥BC   (同旁内角互补,两直线平行)
∴∠1=∠DBC    (两直线平行,内错角相等)
∵BD⊥DC,EF⊥DC(已知)
∴∠BDF=∠EFC=90°(垂直的定义)
∴BD∥EF   (同位角相等,两直线平行)
∴∠2=∠DBC    (两直线平行,同位角相等)
∴∠1=∠2(等量代换)

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知a,b,c满足$\sqrt{b-5}$+|a-$\sqrt{8}$|+${(c-\sqrt{11})}^{2}$=0,求a,b,c的值.

查看答案和解析>>

同步练习册答案