相关习题
 0  295124  295132  295138  295142  295148  295150  295154  295160  295162  295168  295174  295178  295180  295184  295190  295192  295198  295202  295204  295208  295210  295214  295216  295218  295219  295220  295222  295223  295224  295226  295228  295232  295234  295238  295240  295244  295250  295252  295258  295262  295264  295268  295274  295280  295282  295288  295292  295294  295300  295304  295310  295318  366461 

科目: 来源: 题型:解答题

16.如图,在四边形ABCD中,AD∥BC,AD=$\frac{1}{2}$BC,点E是BC的中点,连接AE,BD,若EA⊥AB,BC=26,DC=12,求△ABD的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在四边形纸片ABCD中,∠B=∠D=90°,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都和点G重合,∠EAF=45°.
(1)求证:四边形ABCD是正方形;
(2)求证:三角形ECF的周长是四边形ABCD周长的一半;
(3)若EC=FC=1,求AB的长度.

查看答案和解析>>

科目: 来源: 题型:选择题

14.如图,矩形ABCD的对角线AC=20,BC=16,则图中五个小矩形的周长之和为(  )
A.32B.36C.40D.56

查看答案和解析>>

科目: 来源: 题型:解答题

13.小红和爷爷在400米环形跑道上跑步.他们从某处同时出发,如果同向而行,那么经过200s小红追上爷爷;如果背向而行,那么经过40s两人相遇,求他们的跑步速度.
(1)写出题目中的两个等量关系;
(2)给出上述问题的完整解答过程.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,直线y=4-x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.
(1)当点M在AB上运动时,四边形OCMD的周长为8;
(2)当四边形OCMD为正方形时,将正方形OCMD沿着x轴的正方向移动,设平移的距离为a (0<a≤4),在平移过程中:
①当平移距离a=1时,正方形OCMD与△AOB重叠部分的面积为$\frac{7}{2}$;
②当平移距离a是多少时,正方形OCMD的面积被直线AB分成l:3两个部分?

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(-2,4)△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.
(1)求直线BD的解析式;
(2)求△BCF的面积;
(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE=PA,PE交CD于F.
(1)求证:PC=PE;
(2)求∠CPE的度数;
(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE=115度.

查看答案和解析>>

科目: 来源: 题型:解答题

9.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
(1)若△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2
(3)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出P B1+P C1的最小值为$\sqrt{34}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.(1)解分式方程:$\frac{x-2}{x+2}$-$\frac{16}{{{x^2}-4}}$=1
(2)先化简,再求值:$\frac{{x}^{2}+2x+1}{{x}^{2}-1}$-$\frac{x}{x-1}$,其中x满足不等式组$\left\{\begin{array}{l}x-1≥0\\ x-3<0\end{array}$且x为整数.

查看答案和解析>>

科目: 来源: 题型:解答题

7.计算或化简
(1)计算(-$\sqrt{3}$)2-2$\sqrt{\frac{1}{8}}$+$\sqrt{18}$
(2)化简(a-$\frac{1}{a}$)÷$\frac{{{a^2}-a}}{a^2}$.

查看答案和解析>>

同步练习册答案