相关习题
 0  295153  295161  295167  295171  295177  295179  295183  295189  295191  295197  295203  295207  295209  295213  295219  295221  295227  295231  295233  295237  295239  295243  295245  295247  295248  295249  295251  295252  295253  295255  295257  295261  295263  295267  295269  295273  295279  295281  295287  295291  295293  295297  295303  295309  295311  295317  295321  295323  295329  295333  295339  295347  366461 

科目: 来源: 题型:解答题

6.交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路1上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路1上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:$\sqrt{2}$=1.41,$\sqrt{3}$=1.73).

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为(  )
A.48B.50C.54D.60

查看答案和解析>>

科目: 来源: 题型:选择题

4.计算(-xy23的结果是(  )
A.x3y6B.-x3y6C.-x4y5D.x4y5

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.
(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;
(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试写出∠PAC,∠APB,∠PBD之间的关系,并说明理由.(图3只写结论,不写理由)

查看答案和解析>>

科目: 来源: 题型:解答题

2.列方程组解应用题:
在“某地大地震”灾民安置工作中,某企业捐助了一批板材24 000m2,某灾民安置点用该企业捐助的这批板材全部搭建成A,B两种型号的板房,供2 300名灾民临时居住.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:
板房型号所需板材安置人数
A型板房54m25
B型板房78m28
问:(1)该灾民安置点需搭建A型板房和B型板房各多少间?
(2)因对灾民人数估计不足,实际安置中A型板房超员15%,B型板房超员20%,则该安置点灾民实际有多少人?

查看答案和解析>>

科目: 来源: 题型:解答题

1.我们给出如下定义:两个图形G1和G2,在G1上的任意一点P引出两条垂直的射线与G2相交于点M、N,如果PM=PN,我们就称M、N为点P的垂等点,PM、PN为点P的垂等线段,点P为垂等射点.
(1)如图1,在平面直角坐标系xOy中,点P(1,0)为x轴上的垂等射点,过A(0,3)作x轴的平行线l,则直线l上的B(-2,3),C(-1,3),D(3,3),E(4,3)为点P的垂等点的是B(-2,3),E(4,3);
(2)如果一次函数图象过M(0,3),点M为垂等射点P(1,0)的一个垂等点且另一个垂等点N也在此一次函数图象上,在图2中画出示意图并写出一次函数表达式;
(3)如图3,以点O为圆心,1为半径作⊙O,垂等射点P在⊙O上,垂等点在经过(3,0),(0,3)的直线上,如果关于点P的垂等线段始终存在,求垂等线段PM长的取值范围(画出图形直接写出答案即可).

查看答案和解析>>

科目: 来源: 题型:填空题

20.在体育中考项目中考生可在篮球、排球中选考一项.小明为了选择一项参加体育中考,将自己的10次测验成绩进行比较并制作了折线统计图,依据图中信息小明选择哪一项参加体育中考更合适,并说明理由,篮球,理由:篮球和排球的平均得分相同,但篮球发挥更稳定.

查看答案和解析>>

科目: 来源: 题型:解答题

19.(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.

(2)性质探究:请完成凹四边形一个性质的证明.
已知:如图2,四边形ABCD是凹四边形.
求证:∠BCD=∠B+∠A+∠D.
(3)性质应用:
如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC=102°,则∠B=64°.
(4)类比学习:
如图4,在凹四边形ABCD中,点E,F,G,H分别是边AD,AB,BC,CD的中点,顺次连接各边中点得到四边形EFGH.若AB=AD,CB=CD,则四边形EFGH是C.(填写序号即可)
A.梯形   B.菱形  C.矩形  D.正方形.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在四边形ABCD中,∠D=90°,AC平分∠DAB,且点C在以AB为直径的⊙O上.
(1)求证:CD是⊙O的切线;
(2)点E是⊙O上一点,连接BE,CE.若∠BCE=42°,cos∠DAC=$\frac{9}{10}$,AC=m,写出求线段CE长的思路.

查看答案和解析>>

科目: 来源: 题型:解答题

17.阅读下列材料:2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家议论的重点内容之一.
北京自1984年开展大气监测,至2012年底,全市已建立监测站点35个.2013年,北京发布的首个PM2.5年均浓度值为89.5微克/立方米.2014年,北京空气中的二氧化硫年均浓度值达到了国家新的空气质量标准;二氧化氮、PM10、PM2.5年均浓度值超标,其中PM2.5年均浓度值为85.9微克/立方米.2016年,北京空气中的二氧化硫年均浓度值远优于国家标准;二氧化氮、PM10、PM2.5的年均浓度值分别为48微克/立方米、92微克/立方米、73微克/立方米.与2015年相比,二氧化硫、二氧化氮、PM10年均浓度值分别下降28.6%、4.0%、9.8%;PM2.5年均浓度值比2015年的年均浓度值80.6微克/立方米有较明显改善.(以上数据来源于北京市环保局)
根据以上材料解答下列问题:
(1)2015年北京市二氧化氮年均浓度值为50微克/立方米;
(2)请你用折线统计图将2013-2016年北京市PM2.5的年均浓度值表示出来,并在图上标明相应的数据.

查看答案和解析>>

同步练习册答案