18.“已知△ABC的三条边长分别为$\sqrt{5}$,$\sqrt{10}$,$\sqrt{13}$,求这个三角形的面积.”在解决这个问题时,我们可以先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图甲所示.这样不需要求三角形的高,就可以借用网格计算出它的面积.
(1)直接写出上述△ABC的面积=$\frac{7}{2}$;
(2)上述求三角形面积的方法叫做“构图法”.用此方法在图乙的正方形网格中(每个小正方形的边长a,a>0)画出三边长分别为2$\sqrt{2}$a,$\sqrt{5}$a,$\sqrt{17}$a的三角形,并求出它的面积;
(3)若△ABC的三边长分别为2$\sqrt{{m}^{2}{+n}^{2}}$,$\sqrt{{m}^{2}+1{6n}^{2}}$,$\sqrt{9{m}^{2}+4{n}^{2}}$,其中m>0,n>0,且m≠n,求这个三角形的面积(用含有m,n的代数式表示).