相关习题
 0  295338  295346  295352  295356  295362  295364  295368  295374  295376  295382  295388  295392  295394  295398  295404  295406  295412  295416  295418  295422  295424  295428  295430  295432  295433  295434  295436  295437  295438  295440  295442  295446  295448  295452  295454  295458  295464  295466  295472  295476  295478  295482  295488  295494  295496  295502  295506  295508  295514  295518  295524  295532  366461 

科目: 来源: 题型:解答题

5.如图,抛物线y=ax2+bx-2经过点A(1,0)和点B(4,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)以点A为圆心,作于直线BC相切的⊙A,求⊙A的面积;
(3)将直线BC向下平移n个单位后与抛物线交于点M、N,且线段MN=2CB,求直线MN的解析式及平移距离.
附:阅读材料
法国弗朗索瓦•韦达最早发现一元二次方程中根与系数的关系为:两根之和等于一次项系数与二次项系数之比的相反数,两根之积等于常数项羽二次项系数之比,人们称之为韦达定理.
即:设一元二次方程ax2+bx+c=0的两根为x1、x2,则:x1+x2=-$\frac{b}{a}$,x1•x2=$\frac{c}{a}$能灵活运用韦达定理,有时可以使解题更为简单.

查看答案和解析>>

科目: 来源: 题型:解答题

4.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.
请你根据以上的信息,回答下列问题:
(1)本次共调查了50名学生,其中最喜爱体育的有10人;
(2)在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是72°.
(3)小李和小张在新闻、体育、动画三类电视节目中分别有一类是自己最喜爱的节目,请用树状图或列表法求两人恰好最喜爱同一类节目的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

3.如图,正方形ABCD中,AB=6,点E在边AB上,且BE=2AE.将△ADE沿ED对折至△FDE,延长EF交边BC于点G,连结DG,BF.下列结论:①△DCG≌△DFG;②BG=GC;③DG∥BF;④S△BFG=3.其中正确的结论是①②③(填写序号)

查看答案和解析>>

科目: 来源: 题型:填空题

2.如图,已知矩形ABCD中,AB=6cm,BC=8cm,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH的周长等于20cm.

查看答案和解析>>

科目: 来源: 题型:填空题

1.甲、乙两人相约从A地到B地,甲骑自行车先行,乙开汽车,两人均在同一路线上匀速行驶,乙到B地后即停车等甲,甲、乙两人之间的距离y(千米)与甲行驶的时间x(小时)之间的函数关系如图所示,则乙从A地到B地所用的时间为$\frac{5}{8}$小时.

查看答案和解析>>

科目: 来源: 题型:解答题

20.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.
如图,将一个矩形纸片ABCD,放置在平面直角坐标系中,A(0,0),B(4,0),D(0,3),M是边CD上一点,将△ADM沿直线AM折叠,得到△ANM.
(Ⅰ)当AN平分∠MAB时,求∠DAM的度数和点M的坐标;
(Ⅱ)连接BN,当DM=1时,求△ABN的面积;
(Ⅲ)当射线BN交线段CD于点F时,求DF的最大值.(直接写出答案)
在研究第(Ⅱ)问时,师生有如下对话:
师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题.
小明:我是这样想的,延长MN与x轴交于P点,于是出现了Rt△NAP,…
小雨:我和你想的不一样,我过点N作y轴的平行线,出现了两个Rt△NAP,…

查看答案和解析>>

科目: 来源: 题型:填空题

19.在每个小正方形的边长为1的网格中,等腰直角三角形ACB与ECD的顶点都在网格点上,点N、M分别为线段AB、DE上的动点,且BN=EM.
(Ⅰ)如图①,当BN=$\sqrt{2}$时,计算CN+CM的值等于$\sqrt{10}$+$\sqrt{2}$;
(Ⅱ)当CN+CM取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段CN和CM,并简要说明点M和点N的位置是如何找到的(不要求证明).

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,平面直角坐标系中,抛物线y=x2-2x与x轴交于O、B两点,顶点为P,连接OP、BP,直线y=x-4与y轴交于点C,与x轴交于点D.
(Ⅰ)直接写出点B坐标(2,0);判断△OBP的形状等腰直角三角形;
(Ⅱ)将抛物线沿对称轴平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP;
(i)若抛物线向下平移m个单位长度,当S△PCD=$\sqrt{2}$S△POC时,求平移后的抛物线的顶点坐标;
(ii)在平移过程中,试探究S△PCD和S△POD之间的数量关系,直接写出它们之间的数量关系及对应的m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:
消费卡消费方式
普通卡35元/次
白金卡280元/张,凭卡免费消费10次再送2次
钻石卡560元/张,凭卡每次消费不再收费
以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用
(Ⅰ)若每年去该健身中心6次,应选择哪种消费方式更合算?
(Ⅱ)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;
(Ⅲ)若某位顾客每年去该健身中心健身至少18次,请通过计算帮助这位顾客选择最合算的消费方式.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知x,y为实数,且y=$\sqrt{x-9}$-$\sqrt{9-x}$+4,则$\sqrt{x}$+$\sqrt{y}$=5.

查看答案和解析>>

同步练习册答案