相关习题
 0  295414  295422  295428  295432  295438  295440  295444  295450  295452  295458  295464  295468  295470  295474  295480  295482  295488  295492  295494  295498  295500  295504  295506  295508  295509  295510  295512  295513  295514  295516  295518  295522  295524  295528  295530  295534  295540  295542  295548  295552  295554  295558  295564  295570  295572  295578  295582  295584  295590  295594  295600  295608  366461 

科目: 来源: 题型:填空题

13.一天,老师布置了一份课外作业,在由m×n(m×n>1)个小正方形组成的正方形网格中,当m、n互质(m、n除1外无其他公因数)时,研究它的一条对角线所穿过的小正方形个数f.如图,小亮选取了5个的图形进行观察,由此可以猜出小正方形的个数f与m、n的关系式是f=m+n-1.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,△ABC中,AB=AC,∠B=∠C=40°,点E、F在BC边上,∠AEF=70°,∠AFE=60°,求线段BE、EF、CF围成的三角形的各内角度数.

查看答案和解析>>

科目: 来源: 题型:选择题

11.在平面直角坐标系中,点P的坐标为(0,2),点M的坐标为(m,-$\frac{3}{4}$m-3)(其中m为实数),当PM的长最小时,m的值为(  )
A.-$\frac{12}{5}$B.-$\frac{17}{5}$C.-3D.-4

查看答案和解析>>

科目: 来源: 题型:解答题

10.在△ABC中,AD平分∠BAC,DE⊥AB,点F在AC边上,且∠B+∠AFD=180°,求证:BD=DF.

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知一次函数y=kx+b的图象如图所示,则该函数的表达式可能是(  )
A.y=2x+2B.y=2x-2C.y=-3x+3D.y=-x-4

查看答案和解析>>

科目: 来源: 题型:选择题

8.如图所示,∠ABC=∠ACB,CD⊥AC于C,BE⊥AB于B,AE交BC于点F,且BE=CD,下列结论不一定正确的是(  )
A.AB=ACB.BF=EFC.AE=ADD.∠BAE=∠CAD

查看答案和解析>>

科目: 来源: 题型:选择题

7.如图是自动测风仪记录的风力随时间变化的图象,它反映了某市春季一天连续12个小时风力变化情况,则下列说法正确的是(  )
A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级
C.8时风力最小D.20时风力最小

查看答案和解析>>

科目: 来源: 题型:解答题

6.问题提出:我们知道,等式具有性质:(1)等式两边同时加或减同一个代数式,所得结果仍是等式;(2)等式两边同时乘同一个数或除以同一个不为0的数,所得结果仍是等式.那么任意 一个三阶幻方是否也有类似的性质?
问题探究:为了探究上述问题,我们不妨从简单的三阶幻方①入手;
探究一
如图②,九个数2,3,4,5,6,7,8,9,10已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方②,所以构成三阶幻方①的九个数同时加1,所得到的九个数仍可构成一个三阶幻方.
如图③,九个数-2,-1,0,1,2,3,4,5,6已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方③,所以构成三阶幻方①的九个数同时减3,所得到的九个数仍可构成一个三阶幻方.
     请把九个数0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5填到图④的方格中,使得每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方④,所以构成三阶幻方①的九个数同时减0.5,所得到的九个数仍可构成一个三阶幻方.
1.根据探究一可得任意三阶幻方的性质(1):构成三阶幻方的九个数,每个数同时加或减同一个数,所得到的九个数仍能构成三阶幻方.
探究二:
如图⑤,九个数3,6,9,12,15,18,21,24,27已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑤.所以构成三阶幻方①的九个数同时乘3,所得到的九个数仍可构成一个三阶幻方.
如图⑥,九个数0.5,1,1.5,2,2.5,3,3.5,4,4.5已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑥.所以构成三阶幻方①的九个数同时除以2,所得到的九个数仍可构成一个三阶幻方.
     请把九个数-2,-4,-6,-8,-10,-12,-14,-16,-18填到图⑦的方格中,使得每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑦.所以构成三阶幻方①的九个数同时乘-2,所得到的九个数仍可构成一个三阶幻方.
2.根据探究二可得任意三阶幻方的性质(2):构成三阶幻方的九个数,每个数同时乘同一个数或除以同一个不为0的数,所得到的九个数仍能构成三阶幻方..
性质应用:
3,5,7,9,11,13,15,17,19这九个数能否构成三阶幻方?请用三阶幻方的性质进行说明.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=3,AD是△ABC的角平分线,DE⊥
AB于点E,连接CE,求CE的长.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知在Rt△ABC中,∠ABC=90°,点P是AC的中点.

(1)当∠A=30°且点M、N分别在线段AB、BC上时,∠MPN=90°,请在图1中将图形补充完整,并且直接写出PM与PN的比值;
(2)当∠A=23°且点M、N分别在线段AB、BC的延长线上时,(1)中的其他条件不变,请写出PM与PN比值的思路.

查看答案和解析>>

同步练习册答案