相关习题
 0  295563  295571  295577  295581  295587  295589  295593  295599  295601  295607  295613  295617  295619  295623  295629  295631  295637  295641  295643  295647  295649  295653  295655  295657  295658  295659  295661  295662  295663  295665  295667  295671  295673  295677  295679  295683  295689  295691  295697  295701  295703  295707  295713  295719  295721  295727  295731  295733  295739  295743  295749  295757  366461 

科目: 来源: 题型:填空题

16.如图,OB为⊙O的半径,弦AC∥OB,∠A=50°,则∠B的度数为65°.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,某学生在旗杆EF与实验楼CD之间的A处,测得∠EAF=60°,然后向左移动10米到B处,测得∠EBF=30°,∠CBD=45°,tan∠CAD=$\frac{3}{4}$.
(1)求旗杆EF的高(结果保留根号);
(2)求旗杆EF与实验楼CD之间的水平距离DF的长.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,一次函数y=x+4的图象与反比例函数y=$\frac{k}{x}$(k为常数,且k≠0)的图象交于A(-1,a),B(b,1)两点.
(1)求反比例函数的表达式;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标;
(3)求△PAB的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

13.下列图形中,∠2>∠1的是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1),易证BD+AB=$\sqrt{2}$CB,过程如下:
过点C作CE⊥CB于点C,与MN交于点E
∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,
∴∠BCD=∠ACE.
∵四边形ACDB内角和为360°,
∴∠BDC+∠CAB=180°.
∵∠EAC+∠CAB=180°,
∴BD+AB=$\sqrt{2}$CB.
∴∠EAC=∠BDC
又∵AC=DC,
∴△ACE≌△DCB,
∴AE=DB,CE=CB,
∴△ECB为等腰直角三角形,
∴BE=$\sqrt{2}$CB.
又∵BE=AE+AB,
∴BE=BD+AB.

(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(3)给予证明.
(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=$\sqrt{2}$时,则CD=2,CB=$\sqrt{3}$+1.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.
(Ⅰ)求证:MD=ME;
(Ⅱ)如图2,连OD,OE,当∠C=30°时,求证:四边形ODME是菱形.

查看答案和解析>>

科目: 来源: 题型:填空题

10.如图,将梯形ABCD沿直线AC翻折,点B落在点E处,联结ED,如果∠B=60°,∠ACB=40°,ED∥AB,那么∠AED的度数为20°.

查看答案和解析>>

科目: 来源: 题型:填空题

9.方程5x4=80的解是±2.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.
(1)求证:AC•DF=$\sqrt{2}$BF•BD;
(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;
(3)当点C运动到什么位置时,CE∥BF?并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在菱形ABCD中,P是直线BD上一点,点E在射线AD上,连接PC.
(1)如图1,当∠BAD=90°时,连接PE,交CD与点F,若∠CPE=90°,求证:PC=PE;
(2)如图2,当∠BAD=60°时,连接PE,交CD与点F,若∠CPE=60°,设AC=CE=4,求BP的长.

查看答案和解析>>

同步练习册答案