相关习题
 0  295621  295629  295635  295639  295645  295647  295651  295657  295659  295665  295671  295675  295677  295681  295687  295689  295695  295699  295701  295705  295707  295711  295713  295715  295716  295717  295719  295720  295721  295723  295725  295729  295731  295735  295737  295741  295747  295749  295755  295759  295761  295765  295771  295777  295779  295785  295789  295791  295797  295801  295807  295815  366461 

科目: 来源: 题型:解答题

20.(1)计算:($\sqrt{3}$-1)0+2sin30°-($\frac{1}{2}$)-1+|-2017|;
(2)如图,在△ABC中,已知∠ABC=30°,将△ABC绕点B逆时针旋转50°后得到△A1BC1,若∠A=100°,求证:A1C1∥BC.

查看答案和解析>>

科目: 来源: 题型:解答题

19.阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.
例:由2x+3y=12,得y=$\frac{12-2x}{3}$=4-$\frac{2}{3}$x,(x、y为正整数)
∴$\left\{\begin{array}{l}{x>0}\\{\frac{12-x}{3}>0}\end{array}\right.$ 则有0<x<6.又y=4-$\frac{2}{3}$x为正整数,则$\frac{2}{3}x$为正整数.
∴x为3的倍数,从而x=3,代入y=4-$\frac{2}{3}x$=2.
∴2x+3y=12的正整数解为$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$
问题:(1)请你写出方程2x+y=5的一组正整数解:
(2)若$\frac{6}{x-2}$为自然数,则满足条件的x值有C 个
A、2      B、3       C、4        D、5
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

查看答案和解析>>

科目: 来源: 题型:解答题

18.解方程(组)
①4x+3=2(x-1)+1                 
②$\left\{\begin{array}{l}{x-2y=0}\\{3x+2y=8}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图所示,?ABCD的顶点A、D在反比例函数$y=\frac{k}{x}$(k<0,x<0)的图象上,顶点B、C分别在坐标轴上.
(1)求证:∠BAD=2∠OBC;
(2)若B(0,1),C($\frac{\sqrt{5}}{5}$-1,0),AB=$\sqrt{5}$AD,求k的值.

查看答案和解析>>

科目: 来源: 题型:填空题

16.(1)式子y=$\frac{\sqrt{x-2}}{x-3}$中自变量x的取值范围是x≥2且x≠3;
(2)实数a,b在数轴上对应点的位置如图所示,则3a-$\sqrt{(a-b)^{2}}$=4a-b.

查看答案和解析>>

科目: 来源: 题型:选择题

15.下列各组的公因式是代数式x-2的是(  )
A.(x+2)2,(x-2)2B.x-2x,4x-6C.3x-6,x2-2xD.x-4,6x-18

查看答案和解析>>

科目: 来源: 题型:填空题

14.如图1,直角△OAB(其中O为直角顶点,∠OAB=30°)的直角边OA与线段OP重合在同一根射线OM上,它们绕着点O同时进行转动,△OAB沿着逆时针方向,线段OP沿着顺时针方向,已知OA,OP分别与OM的夹角关于时间t的变化图象如图2所示,则t=$\frac{3}{7}$或3或$\frac{57}{7}$(单位:秒)时,有AB∥OP.

查看答案和解析>>

科目: 来源: 题型:选择题

13.在直角坐标系中,O为原点,A(0,4),点B在直线y=kx+6(k>0)上,若以O、A、B为顶点所作的直角三角形有且只有三个时,k的值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,正方形纸片ABCD的边长为8,E、F分别为AB、CD边上的点,将纸片沿EF折叠,求图中①②③④四个三角形的周长之和.

查看答案和解析>>

科目: 来源: 题型:解答题

11.求值:
(1)125${\;}^{\frac{1}{3}}$+(27)${\;}^{\frac{4}{3}}$×9${\;}^{-\frac{3}{2}}$;
(2)($\frac{2}{5}$)-3×(-$\frac{1}{2}$)-2÷($\frac{3}{4}$)0

查看答案和解析>>

同步练习册答案