相关习题
 0  296020  296028  296034  296038  296044  296046  296050  296056  296058  296064  296070  296074  296076  296080  296086  296088  296094  296098  296100  296104  296106  296110  296112  296114  296115  296116  296118  296119  296120  296122  296124  296128  296130  296134  296136  296140  296146  296148  296154  296158  296160  296164  296170  296176  296178  296184  296188  296190  296196  296200  296206  296214  366461 

科目: 来源: 题型:解答题

16.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A($\sqrt{3}$,1)在反比例函数y=$\frac{k}{x}$(x≠0)的图象上.
(1)求反比例函数y=$\frac{k}{x}$(x≠0)的解析式和点B的坐标;
(2)若将△BOA绕点B按逆时针方向旋转60°得到△BDE(点O与点D是对应点),补全图形,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

15.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是(  )
A.PDB.PBC.PED.PC

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,△ABC在直角坐标系中,点A,B,C在格点上.
(1)请你写出△ABC各顶点的坐标;
(2)求S△ABC
(3)若把△ABC向上平移2个单位,再向左平移2个单位,得△A′B′C′,请你在图中画出△A′B′C′并写出各顶点的坐标.

查看答案和解析>>

科目: 来源: 题型:填空题

13.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为2.

查看答案和解析>>

科目: 来源: 题型:选择题

12.如图,边长为4的等边△ABC和边长为2的等边△A′B′C′的位置如图所示,它们的边BC、B′C′位于同一条直线l上,点C与B′重合,△A′B′C′固定不动,然后把△ABC自左向右沿直线l平移,移出△A′B′C′外(点B与C′重合)停止,设△ABC平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:选择题

11.有甲、乙、丙三种货物,若购甲3件、乙2件、丙1件,共需315元,若购甲1件,乙2件,丙3件共需285元,那么购甲、乙、丙各1件,共需(  )
A.128元B.130元C.150元D.160元

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.
(1)画出与△ABC关于y轴对称的△A1B1C1,点C1的坐标为(1,4);
(2)以原点O为位似中心,在第四象限画一个△A2B2C2,使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.

查看答案和解析>>

科目: 来源: 题型:选择题

9.如图,AC、BD相交于点O,且OA=OC=4,OB=OD=6,P是线段BD上一动点,过点P作EF∥AC,与四边形的两条边分别交于点E,F,设BP=x,EF=y,则下列能表示y与x之间函数关系的图象是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:填空题

8.如图,在矩形ABCD中,AB=4,将△ABD沿对角线对折,得到△EBD(点E为点A的对应点),DE与BC交于点F,cos∠ADB=$\frac{3\sqrt{13}}{13}$,则EF=$\frac{5}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

7.如图,若l1∥l2∥l3,则下列各式错误的是(  )
A.$\frac{BC}{AC}$=$\frac{EF}{DF}$B.$\frac{AB}{AC}$=$\frac{DE}{DF}$C.$\frac{AB}{DE}$=$\frac{AC}{DF}$D.$\frac{AB}{AC}$=$\frac{DE}{EF}$

查看答案和解析>>

同步练习册答案