相关习题
 0  296125  296133  296139  296143  296149  296151  296155  296161  296163  296169  296175  296179  296181  296185  296191  296193  296199  296203  296205  296209  296211  296215  296217  296219  296220  296221  296223  296224  296225  296227  296229  296233  296235  296239  296241  296245  296251  296253  296259  296263  296265  296269  296275  296281  296283  296289  296293  296295  296301  296305  296311  296319  366461 

科目: 来源: 题型:解答题

5.【发现】:如图1,在正三角形ABC中,在AB,AC边上分别取点M,N,BM=AN,连接BN,CM,相交于点O,求∠α
易得:△ABN≌△BCN,则∠1=∠2
∵∠α是△BOC的外角,∴∠α=∠2+∠3
∴∠α=∠1+∠3=∠ABC=60°

【推广】:在正n边形中,对相邻的两边实施同样的操作…
(1)如图2,在正四边形ABCD中,在AB,AD边上分别取点M,N,连接BN,CM,可确定∠α=90°;
(2)如图3,在正五边形ABCDE中,在AB,AD边上分别取点M,N,连接BN,CM,可确定∠α=108°;
(3)判断:∠α可以等于160°吗?如果可以,求出对应的边数n,若不可以,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,正方形ABCD顶点A,D在⊙O上,边BC经过⊙O上一定P,且PF平分∠AFC,边 AB,CD分别与⊙O相交于点E、F,连接EF.
(1)求证:BC是⊙O的切线;
(2)若FC=2,求PC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

3.雾霾天气已经成为人们普遍关注的话题,雾霾不仅仅影响人们的出行,还影响着人们的健康.在2017年2月周末休息期间,某校九年级一班综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了太原市部分市民的观点,并对调查结果进行了整理,绘制了如下不完整的统计表及统计图,观察并回答下列问题:
类别雾霾天气的主要成因百分比
A工业污染45%
B汽车尾气排放m
C城中村燃煤问题15%
D其他(绿化不足等)n
(1)请你求出本次被调查市民的人数及m,n的值,并补全条形统计图;
(2)若该市有800万人口,请你估计持有B,C两类看法的市民共有多少人?
(3)小明同学在四个质地、大小、形状都完全相同的小球上标记A,B,C,D代表四个雾霾天气的主要成因中,放在一个不透明的盒子中,他先随机抽取一个小球,放回去,再随机抽取一个小球,请用画树状图或列表的方法,求出小颖同学刚好抽到B和D的概率.(用A,B,C,D表示各项目)

查看答案和解析>>

科目: 来源: 题型:选择题

2.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc<0;②9a+3b+c=0;③4ac-b2<2a;④2b=3a.
其中正确的结论是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目: 来源: 题型:选择题

1.一个几何体的三视图如图所示,则这个几何体的侧面积是(  )
A.B.C.4D.π

查看答案和解析>>

科目: 来源: 题型:填空题

20.一个不透明的口袋里装有红、黑、绿三种颜色的乒乓球(除颜色外其余都相同),其中红球有2个,黑球有1个,绿球有3个,第一次任意摸出一个球(不放回),第二次再摸出一个球,则两次摸到的都是红球的概率为$\frac{1}{15}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=$\frac{\sqrt{3}}{3}$x上,则A2017的坐标为(  )
A.2015$\sqrt{3}$,2017B.2016$\sqrt{3}$,2018C.2017$\sqrt{3}$,2019D.2017$\sqrt{3}$,2017

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F,与双曲线y=-$\frac{4}{x}$
(x<0)交于点P(-1,n),且F是PE的中点.
(1)求直线l的解析式;
(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),
①当a为何值时,△ABP是以点P为直角顶点的直角三角形?
②当a为何值时,PA=PB.

查看答案和解析>>

科目: 来源: 题型:选择题

17.如图,经过坐标原点的抛物线C1:y=ax2+bx与x轴的另一交点为M,它的顶点为点A,将C1绕原点旋转180°,得到抛物线C2,C2与x轴的另一交点为N,顶点为点B,连接AM,MB,BN,NA,当四边形AMBN恰好是矩形时,则b的值(  )
A.2$\sqrt{2}$B.-2$\sqrt{2}$C.2$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.
(1)求点C的坐标;
(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.

查看答案和解析>>

同步练习册答案